63
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The complex formed between Cocamidopropyl betaine (CAPB) – sulfonated polystyrene (PSS) via electrostatic and hydrophobic interactions

ORCID Icon, , &
Pages 366-376 | Received 16 Jun 2023, Accepted 23 Oct 2023, Published online: 13 Nov 2023
 

ABSTRACT

This work produced a polyelectrolyte, sulfonated polystyrene (PSS) from polystyrene waste. The resulting PSS was characterized by FTIR spectrometry, which shows the bands of the sulfur trioxide group. Thermogravimetric analysis (TGA) confirms the material’s high stability compared to the starting material. The interactions between oppositely charged polyelectrolyte (PSS) and the surfactant cocamidopropyl betaine (CAPB) in an aqueous solution of three different pH values were also studied at 25°C, using conductimetry and viscometry techniques. The CMC of the surfactant is above the critical aggregation concentration (CAC) and well below the C2 (saturation concentration). PSS interacts strongly with the zwitterionic surfactant CAPB. At pH 2.5, the polymer is a strong polyanion, and binding is dominated by electrostatic charge neutralization with the cationic surfactant at this pH. At pH 5.2 and 9, the electrostatic attraction between CAPB and PSS weakens, and the hydrophobic interaction strengthens. The effect of salt concentration on the interaction between CAPB and PSS depends on the competition between increasing interaction and filtering interaction. The ionic strength is essential to these interactions after salt and acid injection. CAC and C2 are affected by the charge of the electrolyte and the medium due to the synergistic effects of alkali on the surfactant compared to the polymer system without alkali-surfactant and probably also due to the increase in the formed bond between the polyelectrolyte and the surfactant in the presence of salt.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Author Contributions

All authors contributed equally to the paper.

Supplementary Data

Supplemental data for this article can be accessed online at https://doi.org/10.1080/1539445X.2023.2277726.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.