391
Views
2
CrossRef citations to date
0
Altmetric
Review

Salting-out Effect on the Separation and Purification of Acetic Esters: Salting-out Agents, Theory, and Applications

ORCID Icon, &
Pages 61-81 | Received 18 Apr 2022, Accepted 09 Dec 2022, Published online: 26 Dec 2022
 

ABSTRACT

In the traditional production of acetic esters, water generated in the esterification reaction can form azeotropes with the ester or the unreacted alcohol, which requires subsequent multi-step distillation or extraction to purify the esters. A large number of intermediate streams in the separation process need to consume a lot of steam to obtain high-purity acetic esters, resulting in a high total energy consumption. In this review, a new extraction separation and purification technology, namely the salting-out effect for the purification of acetic esters, was summarized. Different salting-out agents were used to reduce the concentration of water/alcohols in the ester phase and increase the selectivity coefficient of esters to minimize energy consumption. The scaled particle theory provides a clear guideline for the baseline on the separation goal of the alkyl acetate/alcohol/water systems. Extractive distillation, reactive distillation, azeotropic distillation, pervaporation, adsorption, salting-out assisted distillation, and hybrid salting-out-distillation were compared to assess their advantages and disadvantages. Energy-saving production and separation of acetic esters can be achieved with the hybrid salting-out-distillation process because the salting-out agents are cheap, non-toxic, and non-volatile, and the salting-out process can be conducted at room temperature.

Acknowledgments

This work was funded by the Start-up Fund of Guangdong University of Technology (N. 263113465) and the Guangdong Basic and Applied Basic Research Foundation, China (2021A1515110329).

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.