41
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Real-Time Communications for Wireless Sensor Networks: A Two-Tiered Architecture

&
Pages 806-823 | Published online: 13 Nov 2009
 

Abstract

While many approaches have been proposed to deal with energy/latency trade-offs, they are likely to be insufficient for the applications where reduced delay guarantee is the main concern. In this article, we investigated the potential application of a decentralized two-tiered network architecture, in large-scale wireless sensor networks, where an upper layer Wireless Local Area Network (WLAN), offering more powerful capabilities, serves as a backbone to an adaptively-clustered Low-Energy Adaptive Clustering Hierarch (LEACH)-based wireless sensor network. The WLAN layer will be involved in the communication between the sensor network and the control station, mitigating the impact of the limited capacities of the sensor nodes. With this two-tiered architecture we target to provide more reliable data delivery with reduced delay bounds, and lower energy consumption in the underlying sensor network, thereby increasing its lifetime. Simulation results show that the two-tiered network architecture achieved a relatively long lifetime, while preserving remarkably low latencies, compared to a single-tiered LEACH and a super-clustered LEACH-based network architectures.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.