38
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation of premixed combustion of producer gas with hydrogen injection in a cyclonical chamber

ORCID Icon
Pages 3644-3662 | Received 04 Jan 2024, Accepted 21 Feb 2024, Published online: 11 Mar 2024
 

ABSTRACT

This paper employs computational fluid dynamics (CFD) simulations with an eddy dissipation concept model (EDC) and a skeletal reaction mechanism (SK17) to analyze the impact of hydrogen addition on the premixed combustion mode of producer gas (PG) fuel in a cyclonic flow combustion chamber. The results, validated against measured wall temperature data, demonstrate a minor discrepancy between simulation and experiment. The studied result showed that injection of hydrogen into PG fuel combustion elevates the temperature of the combustion process, which can be indicated by the average temperature across the combustion chamber, outlet temperature of exhaust gas, and reactive radical species. However, increasing H2 injection over 20% results in strongly increasing CO formations. Compared to a fixed thermal input case, hydrogen injection with a variable input power resulted in a higher combustion temperature and increased emissions of both CO and NO. The maximum CO emission reached approximately 1246 ppm, while NO peaked at around 75 ppm, both observed at a 30% hydrogen injection rate. The key finding of this study revealed that direct injection of hydrogen to the combustion under the condition of a given equivalence ratio is unfavorable due to insufficient oxygen for the reaction, leading to an increase in CO emissions. The optimal condition would be a hydrogen injection below 20%, which produces low CO and NO emissions.

Acknowledgements

The present study was supported by the Department of Mechanical Engineering, National University of Laos, and School of Mechanical Engineering, Universiti Sains Malaysia, for allowing usage of ANSYS software, which the author appreciates.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Notes on contributors

Lemthong Chanphavong

Lemthong Chanphavong is presently a lecturer/researcher at Mechanical engineering department, National University of Laos. He achieved PhD from Universiti Sains Malaysia (USM) in the field of energy engineering and his research is related to renewable energies, biofuels, and combustion.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.