456
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sequences of twice-iterated Δw-Gould–Hopper Appell polynomials

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2286714 | Received 17 May 2022, Accepted 17 Nov 2023, Published online: 06 Dec 2023

ABSTRACT

In this paper, we introduce general sequence of twice-iterated Δw-(degenerate) Gould–Hopper Appell polynomials (TI-DGHAP) via discrete Δw-Gould–Hopper Appell convolution. We obtain some of their characteristic properties such as explicit representation, determinantal representation, recurrence relation, lowering operator (LO), raising operator (RO), difference equation (DE), integro-partial lowering operator (IPLO), integro-partial raising operator (IPRO) and integro-partial difference equation (IPDE). As special cases of these general polynomials, we present TI degenerate Gould–Hopper Bernoulli polynomials, TI degenerate Gould–Hopper Poisson–Charlier polynomials, TI degenerate Gould–Hopper Boole polynomials and TI degenerate Gould–Hopper Poisson–Charlier–Boole polynomials. We also state their corresponding characteristic properties.

2010 MATHEMATICS SUBJECT CLASSIFICATIONS:

1. Introduction

Families of special polynomials have been the subject of interest in mathematics due to their nice characteristic properties, which arises in the solutions of many applied problems. Among them, Appell polynomials have special importance, because of their simple and useful definition i.e. [Citation1–7], (1) ddxAn(x)=nAn1(x).(1) Appell polynomial sequence {Ak(x)}kN0 can be equivalently defined by the generating relation a(z)exz=k=0Ak(x)zkk!where a(z)=n=0Anznn!,A00.These simple definitions play the key point in the investigation of their many interesting properties (see [Citation3–5, Citation8–14]). Because of their wide range of applications, several variants of Appell polynomials have been intensively studied especially in the last two decades. In [Citation6], Khan and Raza introduced 2-iterated Appell polynomials. Twice-iterated Δw-Appell polynomials were introduced by [Citation15] and their various properties are included. Twice-iterated 2D q-Appell polynomials, one of the generalizations of twice-iterated Appell polynomials, were introduced in [Citation16], and the difference equations and various properties of these polynomials are included in [Citation17]. 2-iterated Appell polynomials have been defined by the generating relation in [Citation6] a2(z)a1(z)exz=k=0Rk[2](x)zkk!,where a1(z)=k=0αkzkk!,α00and a2(z)=k=0βkzkk!,β00.It is clear that from [Citation6], they satisfy Dx(Rk[2](x))=kRk1[2](x),kN.On the other hand, in [Citation13], xΔw-Appell polynomials are defined by (2) xΔwAk=kwAk1,kN,wR+(2) where xΔw is the finite difference operator [Citation18] given by xΔw[u]=u(x+w)u(x).

Finite difference operator of order s is defined in [Citation18] as follows: xΔws[u]=xΔw(xΔws1[u])=r=0s(1)sr(sr)u(x+rw),sNand xΔw0=I,xΔw1=xΔw. An equivalent definition to (Equation2), from [Citation13], can be given by the generating relation a(z)(1+wz)xw=k=0Ak(x)zkk!,where a(z)=j=0αj,wtjj!,α0,w0.From [Citation13], the explicit representation of the xΔw-Appell sequence is expressed as follows: Ak(x)=αk+(k1)αk1(x)1w+(k2)αk2(x)2w++α0(x)kw,{kN0={0,1,}}where (x)kw=(xw)k(w)kand Pochhammer symbol is defined by [Citation18]: (x)0=1(x)n=x(x+1)(x+n1),n=1,2,.In [Citation15], TI-Δw-Appell polynomials were defined by the following generating relation: a2(z)a1(z)(1+wz)xw=k=0Ak[2](x,y;w)zkk!.On the other hand, Gould–Hopper polynomials of the rth order are given in [Citation19–21] and has the following generating function (3) ext+ytr=k=0gkr(x,y)tkk!.(3) If r= 2 in (Equation3), it reduces to Gould–Hopper (2-variable Hermite Kampé de Fériet) polynomials. Additionally, its relationship with Brafman polynomials in terms of hypergeometric function was examined in [Citation22]. The generating function of the Gould–Hopper Appell polynomials given in [Citation4,Citation23] is as follows: A(t)ext+yt2=k=0HAk(x,y)tkk!.Δw-GHA polynomials, which are a generalization of these polynomials, are defined in [Citation24] and have the following generating function: a(z)(1+wz)xw(1+wz2)yw=k=0Ak(x,y;w)zkk!,where a(z) is given by a(z)=j=0αj,wzjj!,α0,w0.We should note that the Δw-Gould–Hopper polynomials which are defined by the generating function [Citation24] (1+wz)xw(1+wz2)yw=k=0Gkw(x,y)zkk!,form a bases for the Δw-Gould–Hopper polynomials and they are explicitly given by Gkw(x,y)=m=0[k2](k2m)(x)k2mw(y)mw(2m)!m!.Motivated by the application areas of Appell polynomials and their above variants, in the present paper, we introduce the TI Δw-Gould–Hopper Appell polynomials and investigate some of their characteristic properties, which will have potential applications in different areas of applied sciences.

The paper is organized as follows: In Section 2, based on the definition of Δw-GHAP and discrete Appell convolutions, TI-DGHAP are introduced. Also, for this family of polynomials, the equivalence theorem, determinantal representation and circular theorem are obtained. In Section 3, we obtain a recurrence relation, LO, RO, DE, IPLO, IPRO and IPDE satisfied by the sequence of TI-DGHAP. In Section 4, we introduce TI degenerate Gould–Hopper Bernoulli polynomials, TI degenerate Gould–Hopper Poisson–Chalier polynomials, TI degenerate Gould–Hopper Boole polynomials and TI degenerate Gould–Hopper Poisson–Charlier–Boole polynomials for special cases of TI-DGHAP.

2. Some properties of the sequences of TI-DGHAP

In this section, we have examined the sequence of TI-DGHAP, which we have denote it with Ak[2](x,y;w):=Ak[2]. We present equivalance theorem, determinantal representation and circular theorem for this family of polynomials.

Let Qk(x,y) be the Δw-GHAP sequence given by (4) Qk(x,y)=j=0km=0[j2](kj)(j2m)qkj(x)j2mw(y)mw(2m)!m!(4) with (5) a1(z)=k=0qkzkk!,q00.(5) Now we introduce the sequences of TI-DGHAP as follows:

Definition 2.1

Let Qj(x,y) be a sequence of Δw-GHAP given in (Equation4) and Pk(x,y) be any polynomial explicitly given as follows: (6) Pk(x,y)=j=0km=0[j2]a(k,j)(j2m)(x)j2mw(y)mw(2m)!m!.(6) Let Ak[2] be the polynomial convolution defined by the TI-DGHAP as (7) Ak[2]:=j=0ka(k,j)Qj(x,y),kN0.(7) The polynomials Ak[2] will be called TI-DGHAP, if they satisfy the relation (8) xΔwAk[2]=kwAk1(2),kN.(8)

Theorem 2.1

The following statements are equivalent.

(i)

{Ak[2]}kN is a sequence of TI-DGHAP.

(ii)

{Pk(x,y)}kN is a sequence of Δw-GHAP that satisfy given by a(k,j)=(kj)akjand a2(z)=k=0akzkk!.

(iii)

The explicit representation of the sequence of TI-DGHAP {Ak[2]}kN is as follows: (9) Ak[2]=j=0kl=0jm=0[l2][(kj)(jl)(l2m)akjqjl×(x)l2mw(y)mw(2m)!m!].(9)

(iv)

The generating function of the {Ak[2]}kN is given by (10) a2(z)a1(z)(1+wz)xw(1+wz2)yw=k=0Ak[2]zkk!.(10)

Proof.

(i)(ii) Let {Ak[2]}kN be a sequence of TI-DGHAP. Applying the finite difference operator xΔw on both sides of (Equation7), we get kwAk1[2]=j=1ka(k,j)jwQj1(x,y)=j=0k1a(k,j+1)(j+1)wQj(x,y).Therefore, we have Ak1[2]=1kj=0k1a(k,j+1)(j+1)Qj(x,y),or equivalently (11) Ak[2]=1k+1j=0ka(k+1,j+1)(j+1)Qj(x,y).(11) Comparing (Equation7) and (Equation11), we have a(k,j)=j+1k+1a(k+1,j+1).Iterating this last equation j times, we obtain a(k+1,j+1)=(k+1)k(kj+1)(j+1)j1a(kj,0)=(k+1)k(kj+1)(kj)!(j+1)j1(kj)!a(kj,0)=(k+1j+1)a(kj,0).Hence we have (12) a(k,j)=(kj)akj.(12) Substituting (Equation12) in (Equation6), we find that Pk(x,y)=j=0km=0[j2]akj(kj)(j2m)(x)j2mw(y)mw(2m)!m!.Using the finite difference operator xΔw on both sides of the last equation, we have xΔw(Pk(x,y))=kwPk1(x,y).Therefore, {Pk(x,y)}kN is a sequence of Δw-GHAP. The converse statement (ii)(i) is clearly demonstrated to be correct.

To obtain (ii)(iii), let {Pk(x,y)}kN be a sequence of Δw-GHAP. By the definition of the TI-DGHAP, we have Ak[2]:=j=0k(kj)akjQj(x,y),kN0where Qj(x,y)=l=0jm=0[l2](jl)(l2m)qjl(x)l2mw(y)mw(2m)!m!.Hence, the explicit form for TI-DGHAP is as follows: Ak[2]=j=0k(kj)akjl=0jm=0[l2][(jl)(l2m)qjl(x)l2mw×(y)mw(2m)!m!]=j=0kl=0jm=0[l2][(kj)(jl)(l2m)akjqjl(x)l2mw×(y)mw(2m)!m!].The converse proposition (iii)(ii) is clearly demonstrated to be correct. Lastly, to obtain (iii)(iv), writing the explicit form of Ak[2] and applying the Cauchy product for the series, we get k=0Ak[2]zkk!=a2(z)a1(z)(1+wz)xw(1+wz2)yw.Thus, the proof is completed.

Theorem 2.2

The sequence of TI-DGHAP has the following determinantal representation: (13) Ak[2]=(1)k(δ0)k+1×|Q0(x,y)Q1(x,y)Qk1(x,y)Qk(x,y)δ0δ1δk1δk0δ0(k11)δk2(k1)δk100(k12)δk3(k2)δk200δ0(kk1)δ1|(13) where δ0,δ1,δ2,,δn are the coefficients of the Maclaurin series of the function 1a2(z).

Proof.

Using the series representation of 1a2(z) as follows: [a2(z)]1=j=0δjzjj!,applying the generating function (Equation10), we get a1(z)(1+wz)xw(1+wz2)yw=(j=0δjzjj!)(k=0Ak[2]zkk!).Hence k=0Qk(x,y)zkk!=(j=0δjzjj!)(k=0Ak[2]tkk!).Applying the Cauchy product, we have k=0Qk(x,y)zkk!=k=0j=0k(kj)δjAkj[2]zkk!.By comparing the coefficients of zkk! from the polynomial equation, we get Qk(x,y)=j=0k(kj)δjAkj[2],kN0.As a result, we have the system of equations: Q0(x,y)=δ0A0[2],Q1(x,y)=δ0A1[2]+δ1A0[2],Q2(x,y)=δ0A2[2]+(21)δ1A1[2]+δ2A0[2],Qk1(x,y)=δ0Ak1[2]+(k11)δ1Ak2[2]+δk1A0[2],Qk(x,y)=δ0Ak[2]+(k1)δ1Ak1[2]++δkA0[2].Applying Cramer's rule, we get Ak[2]=|δ000Q0(x,y)δ1δ00Q1(x,y)δ2(21)δ10Q2(x,y)δ3(32)δ20Q3(x,y)δk1(k11)δk2δ0Qk1(x,y)δk(k1)δk1(kk1)δ1Qk(x,y)||δ0000δ1δ000δ2(21)δ100δ3(32)δ200δk1(k11)δk2δ00δk(k1)δk1(kk1)δ1δ0|By taking the transpose in the last equation, we have Ak[2]=1(δ0)k+1×|δ0δ1δk1δk0δ0(k11)δk2(k1)δk100(k12)δk3(k2)δk200(k13)δk4(k3)δk300δ0(kk1)δ1Q0(x,y)Q1(x,y)Qk1(x,y)Qk(x,y)|.As a result the proof is completed using the elementary row operations.

Theorem 2.3

The sequence of polynomials having the form (13) satisfies (14) xΔwAk[2]=kwAk1[2],kN.(14)

Proof.

Applying xΔw to the determinantal representation given in (13), we obtain

xΔwAk[2]=(1)k(δ0)k+1|xΔwQ0(x,y)xΔwQ1(x,y)xΔwQk1(x,y)xΔwQk(x,y)δ0δ1δk1δk0δ0(k11)δk2(k1)δk100(k12)δk3(k2)δk200δ0(kk1)δ1|.

Using the relation xΔwQk(x,y)=kwQk1(x,y)and then dividing the first row by w, we can expand the determinant with respect to the first column. The proof is completed by multiplying the lth row by l−1, and the mth column by 1m.

Theorem 2.4

Circular Theorem

The following statements are equivalent for the sequence of TI-DGHAP:

(i)

{Ak[2]}kN is a TI-DGHAP.

(ii)

(ii) The TI-DGHAP Ak[2] has the generating function given by a2(z)a1(z)(1+wz)xw(1+wz2)yw=k=0Ak[2]zkk!.

(iii)

The TI-DGHAP Ak[2] are expressed in a determinantal representation in (Equation13).

Proof.

The proof of this theorem is clearly seen using Theorems 2.1, 2.2 and 2.3.

3. Reccurence relation, LO, RO, DE, IPLO, IPRO and IPDE of the TI-DGHAP

In this section, we obtain the recurrence relation, LO, RO, DE, IPLO, IPRO and IPDE which are satisfied by the TI-DGHAP.

Theorem 3.1

A recurrence relation satisfied by TI-DGHAP is given by (15) Ak+1[2]=j=0k(kj)θjAkj[2]+j=0k(kj)ρjAkj[2]+xj=0kk!(kj)!(w)jAkj[2]+2yj=0[k12]k!(k2j1)!(w)jAk2j1[2],k1(15) where (16) a1(z)a1(z)=j=0θjzjj!anda2(z)a2(z)=j=0ρjzjj!.(16)

Proof.

If we take the derivative with respect to t on both sides of (Equation10), we get k=0Ak+1[2]zkk!=a1(z)a1(z)a1(z)a2(z)(1+wz)xw(1+wz2)yw+a2(z)a2(z)a1(z)a2(z)(1+wz)xw(1+wz2)yw+x1+wza1(z)a2(z)(1+wz)xw(1+wz2)yw+2yz1+wz2a1(z)a2(z)(1+wz)xw(1+wz2)yw.Using (Equation16) and the series expansions: (17) 11+wz=j=0(wz)j,|wz|<1 ; 11+wz2=j=0(wz2)j,|wz2|<1,(17) we have k=0Ak+1[2]zkk!=(j=0θjzjj!)(k=0Ak[2]zkk!)+(k=0ρjzjj!)(k=0Ak[2]zkk!)+x(j=0(wz)j)(k=0Ak[2]zkk!)+2y(j=0(wz2)j)(n=0Ak[2]zk+1k!).Hence, by using the Cauchy product, we obtain (18) k=0Ak+1[2]zkk!=(x+θ0+ρ0)A0[2]+k=1j=0k(kj)θjAkj[2]zkk!+k=1j=0k(kj)ρjAkj[2]zkk!+xk=1j=0kk!(kj)!(w)jAkj[2]zkk!+2yk=1j=0[k12][k!(k2j1)!(w)jAk2j1[2]×zkk!],k1.(18) The proof is completed by equating the coefficients of zkk! on both sides of the (Equation18).

Theorem 3.2

The LO, RO and DE satisfied by the TI-DGHAP are given by (19) Lk:=1kwxΔw,(19) (20) Lk+:=j=0kθjj!wjxΔwj+j=0kρjj!wjxΔwj+xj=0k(1)jxΔwj+2yj=0[k12][×(1)jwj+1xΔw2j+1],k1(20) and (21) [j=0kθjj!wjxΔwj+1+j=0kρjj!wjxΔwj+1+(x+w)j=0k(1)jxΔwj+1+wj=0k(1)jxΔwj+2yj=0[k12](1)jwj+1xΔw2j+2(k+1)w+wj=0k(1)jxΔwj+2yj=0[k12](1)jwj+1xΔw2j+2]Ak[2]=0,k1(21) respectively.

Proof.

Using the following relation: xΔwAk[2]=kwAk1[2],we get 1kwxΔwAk[2]=Ak1[2],which clearly shows that the lowering operator is given by Lk:=1kwxΔw.We can write the term Akj[2] by applying the lowering operator to the term Ak[2] j times as follows: (22) Akj[2]=[Lkj+1Lkj+2Lk]Ak[2]=[1(kj+1)wxΔw1(kj+2)wxΔw1kwxΔw]Ak[2]=(kj)!k!wjxΔwjAk[2].(22)

Similarly, we obtain Ak2j1[2] as follows: (23) Ak2j1[2]=(k2j1)!k!w2j+1xΔw2j+1Ak[2].(23) Upon substituting from (Equation22) and (Equation23) in (Equation15), we get Ak+1[2]=[j=0kθjj!wjxΔwj+j=0kρjj!wjxΔwj+xj=0k(1)jxΔwj+2yj=0[k12](1)jwj+1xΔw2j+1]×Ak[2],k1.Hence the raising operator is given by Lk+:=j=0kθjj!wjxΔwj+j=0kρjj!wjxΔwj+xj=0k(1)jxΔwj+2yj=0[k12](1)jwj+1xΔw2j+1,k1.Now, using the factorization method to obtain the difference equation of the TI-DGHAP Lk+1Lk+(Ak[2])=Ak[2],we get Ak[2]=1(k+1)wxΔw[j=0kθjj!wjxΔwj+j=0kρjj!wjxΔwj+xj=0k(1)jxΔwj+2yj=0[k12](1)jwj+1xΔw2j+1]Ak[2],k1.In view of the following the relation in [Citation15] xΔw{u(x)v(x)}=u(x+w)xΔw{v(x)}+v(x)xΔw{u(x)}and when the terms are reorganized, we can write [j=0kθjj!wjxΔwj+1+j=0kρjj!wjxΔwj+1+(x+w)j=0k(1)xjΔwj+1+wj=0k(1)jxΔwj+2yj=0[k12](1)jwj+1xΔw2j+2wj=0k(1)jxΔwj+2yj=0[k12](1)jwj+1xΔw2j+2(k+1)w]Ak[2]=0,k1.Thus the proof is completed.

Theorem 3.3

The IPLO, IPRO and IPDE satisfied by the TI-DGHAP are given by (24) Lk:=1kxΔw1yΔw,(24) (25) Lk+:=j=0kθjj!xΔwjyΔwj+j=0kρjj!xΔwjyΔwj+xj=0k(w)jxΔwjyΔw+2yj=0[k12](w)jxΔw(2j+1)yΔw2j+1,k1(25) and (26) [j=0kθjj!xΔwjyΔwj+1+j=0kρjj!xΔwjyΔwj+1+xj=0n(w)jxΔwjyΔwj+1+2(y+w)j=0[k12](w)jxΔw(2j+1)yΔw2j+2+2wj=0[k12](w)jxΔw(2j+1)yΔw2j+1(k+1)xΔw]×Ak[2]=0,k1(26) where xΔw1 is the inverse of xΔw, respectively.

Proof.

Using the following relations: xΔwAk[2]=kwAk1[2]and yΔwAk[2]=k(k1)wAk2[2],we get yΔwAk[2]=kxΔwAk1[2].By applying xΔw1 to both sides of the last equation, we have Ak1[2]=1kxΔw1yΔwAk[2],which states that the integro-partial lowering operator is given by Lk:=1kxΔw1yΔw.Similarly, using (Equation8), we have 1kwxΔwAk[2]=Ak1[2].By applying xΔw1 to both sides of the equation and using arithmetic operations, we get xΔwjAk1[2]=1k(k+1)(k+j1)wjAk+j1[2].By applying the IPLO, kj times, to the term Ak[2], we have Aj[2]=[Lj+1Lj+2Lk]Ak[2]=[1(j+1)xΔw1yΔw1(j+2)xΔw1yΔw1kxΔw1yΔw]Ak[2]=j!k!xΔw(kj)yΔwkjAk[2].

Similarly, we obtain Akj[2] and Ak2j1[2] as follows: (27) Akj[2]=(kj)!k!xΔwjyΔwjAk[2](27) and (28) Ak2j1[2]=(k2j1)!k!xΔw(2j+1)yΔw2j+1Ak[2].(28) By using the (Equation27), (Equation28) in (Equation15), we get Ak+1[2]=[j=0kθkj!xΔwjyΔwj+j=0kρjj!xΔwjyΔwj+xj=0k(w)jxΔwj+2yj=0[k12]((w)j×xΔw(2j+1)yΔw2j+1)]Ak[2],k1.Hence the integro-partial raising operator is given by Lk+:=j=0kθjj!xΔwjyΔwj+j=0kρjj!xΔwjyΔwj+xj=0k(w)jxΔwjyΔwj+2yj=0[k12](w)jxΔw(2j+1)yΔw2j+1,k1.Now, using the factorization method to obtain the integro-partial difference equation of the TI-DGHAP Lk+1Lk+(Ak[2]))=Ak[2],we get 1k+1xΔw1yΔw[j=0kθjj!xΔwjyΔwj+j=0kρjj!xΔwjyΔwj+xj=0k(w)jxΔwjyΔwj+2yj=0[k12](w)jxΔw(2j+1)yΔw2j+1]Ak[2]=Ak[2],k1and reorganizing the terms, we can write [j=0kθjj!xΔwjyΔwj+1+j=0kρjj!xΔwjyΔwj+1+xj=0k(w)jxΔwjyΔwj+1+2(y+w)j=0[k12](w)jxΔw(2j+1)yΔw2j+2+2wj=0[k12](w)jxΔw(2j+1)yΔw2j+1(k+1)xΔw]×Ak[2]=0,k1.Thus the proof is completed.

4. Special cases of the TI-DGHAP

In this section, some special cases of the determining functions a1(z) and a2(z), we define TI degenerate Gould–Hopper Bernoulli polynomials, TI degenerate Gould–Hopper Poisson–Chalier polynomials, TI degenerate Gould–Hopper Boole polynomials and TI degenerate Gould–Hopper Poisson–Charlier–Boole polynomials and obtain the recurrence relations, LO, RO, DE, IPLO, IPRO and IPDE for these polynomials.

4.1. TI degenerate Gould–Hopper Bernoulli polynomials

The TI degenerate Gould–Hopper Bernoulli polynomials Bk[2](x,y;w;α;β):=Bk[2] are defined as follows: (29) [(z(1+wz)1w1)α(z(1+wz)1w1)β(1+wz)xw×(1+wz2)yw]=k=0Bk[2]zkk!(29) where a1(z)=(z(1+wz)1w1)αanda2(z)=(z(1+wz)1w1)β.

Corollary 4.1

The recurrence relation satisfied by the TI degenerate Gould–Hopper Bernoulli polynomials is as follows: (30) Bk+1[2]=(α+β)[j=0k(kj)(w)jj!Bkj[2]+j=0km=0j+1(kj)(w)jm+1j!Bm,wm!Bkj[2]]+xj=0k(w)jk!(kj)!Bkj[2]+2yj=0[k12](w)jk!(k2j1)!Bk2j1[2],k1.(30) where the degenerate Bernoulli numbers Bm,w are given by the following series in [Citation25] (31) z(1+wz)1w1=m=0Bm,wzmm!.(31)

Corollary 4.2

The LO, RO and DE satisfied by the TI degenerate Gould–Hopper Bernoulli polynomials are as follows: (32) Lk:=1kwxΔw,(32) (33) Lk+:=(α+β)[j=0k(1)jxΔwj+j=0km=0j+1(×(1)jm+1wm+1Bm,wm!xΔwj)j=0k(1)jx]+xj=0k(1)jxΔwj+2yj=0[k12](1)jwj+1xΔw2j+1(33) and (34) [(α+β)j=0km=0j+1(1)jm+1wm+1Bm,wm!xΔwj+1(α+β)j=0k(1)jxΔwj+1+(x+w)j=0k(1)jxΔwj+1+wj=0k(1)jxΔwj+2yj=0[k12](1)jwj+1xΔw2j+2(k+1)w]×Bk[2]=0,k1(34)

where Bm,w are the degenerate Bernoulli numbers in (Equation31), respectively.

Corollary 4.3

The IPLO, IPRO and IPDE satisfied by the TI degenerate Gould–Hopper Bernoulli polynomials are as follows: (35) Lk:=1kxΔwyΔw1,(35) (36) Lk+:=(α+β)[j=0k(w)jxΔwjyΔwj+j=0nm=0j+1(w)jm+1Bm,wm!xΔwjyΔwj]+xj=0k(w)jxΔwjyΔwj+2yj=0[k12](w)jxΔw(2j+1)yΔw2j+1(36) and (37) [(α+β)j=0km=0j+1(w)jm+1Bm,wm!xΔwjyΔwj+1(α+β)j=0k(w)jxΔwjyΔwj+1+xj=0k(w)jxΔwjyΔwj+1+2(y+w)×(j=0[k12](w)jxΔw(2j+1)yΔw2j+2)+2wj=0[k12](w)jxΔw(2j+1)yΔw2j+1(k+1)xΔw]×Bk[2]=0,k1(37) where Bm,w are the degenerate Bernoulli numbers in (Equation31), respectively.

Remark 4.1

When we write α=1 and β=0 in the TI degenerate Gould–Hopper Bernoulli polynomials, we get degenerate Gould–Hopper polynomials for the following generating function in [Citation15] (z(1+wz)1w1)(1+wz)xw(1+wz2)yw=k=0Bk[2]zkk!.When we write α=1 and β=1 in the TI degenerate Gould–Hopper Bernoulli polynomials, we get degenerate Gould–Hopper Bernoulli polynomials of order 2 for the following generating function (z(1+wz)1w1)2(1+wz)xw(1+wz2)yw=k=0Bk[2]zkk!.

Remark 4.2

We should notice that if we try to find the recurrence relation and difference equation of degenerate Gould–Hopper Bernoulli polynomials of order 2, the coefficient will be given of in terms of the degenerate Gould–Hopper Bernoulli polynomials the number of order 2. But we are seen from Corollary 4.1 and 4.2 that the recurrence relation and difference equation is given in terms of the Bernoulli numbers of order 1 generating by (Equation29).

4.2. TI degenerate Gould–Hopper Poisson–Charlier polynomials

The TI degenerate Gould–Hopper Poisson–Charlier polynomials Ck[2](x,y;w;α;β):=Ck[2] are defined as follows: (38) eαwzeβwz(1+wz)xw(1+wz2)yw=n=0Ck[2]zkk!,(38) where a1(z)=eαwzanda2(z)=eβwz.

Corollary 4.4

The recurrence relation satisfied by the TI degenerate Gould–Hopper Poisson–Charlier polynomials is as follows: (39) Ck+1[2]=(αw+βw)Ck[2]+xj=0k(w)jk!(kj)!Ckj[2]+2yj=0[k12](w)jk!(k2j1)!Ck2j1[2],k1.(39)

Corollary 4.5

The LO, RO and DE satisfied by the TI degenerate Gould–Hopper Poisson–Charlier polynomials are as follows: (40) Lk:=1kwxΔw,(40) (41) Lk+:=(αw+βw)+xj=0k(1)jxΔwj+2yj=0[k12](1)jwj+1xΔw2j+1,k1(41) and (42) [(αw+βw)xΔw+(x+w)j=0k(1)jxΔwj+1+wj=0k(1)jxΔwj+2yj=0[k12](1)jwj+1xΔw2j+2(k+1)w]Ck[2]=0,k1(42) respectively.

Corollary 4.6

The IPLO, IPRO and IPDE satisfied by the TI degenerate Gould–Hopper Poisson–Charlier polynomials are as follows: (43) Lk:=1kxΔw1yΔw,(43) (44) Lk+:=(αw+βw)+xj=0k(w)jxΔwjyΔwj+2yj=0[k12](w)jxΔw(2j+1)yΔw2j+1,k1(44) and (45) [(αw+βw)yΔw+xj=0k(w)jxΔwjyΔwj+1+2(y+w)j=0[k12](w)jxΔw(2j+1)yΔw2j+2+2wj=0[k12](w)jxΔw(2j+1)yΔw2j+1(k+1)xΔw]×Ck[2]=0,k1(45) respectively.

4.3. TI degenerate Gould–Hopper Boole polynomials

The TI degenerate Gould–Hopper Boole polynomials Blk[2](x,y;w;η):=Blk[2] are defined as follows: (46) (11+(1+wz)ηw)2(1+wz)xw(1+wz2)yw=k=0Blk[2]zkk!(46) where a1(z)=a2(z)=11+(1+wz)ηw.

Corollary 4.7

The recurrence relations satisfied by the TI degenerate Gould–Hopper Boole polynomials is as follows: (47) Blk+1[2]=2ηj=0k(kj)(w)jj!Blkj[2]+2ηj=0km=0j(kj)(w)jmj!Blm,wm!Blkj[2]+xj=0k(w)jk!(kj)!Blkj[2]+2yj=0[k12](w)jk!(k2j1)!Blk2j1[2],k1(47) where Blm,w are the degenerate Boole numbers generating by in [Citation24] (48) 11+(1+z)ηw=m=0Blm,wzmm!.(48)

Corollary 4.8

The LO, RO and DE satisfied by the TI degenerate Gould–Hopper Boole polynomials are as follows: (49) Lk:=1kwxΔw,(49) (50) Lk+:=(x2η)j=0k(1)jxΔwj+2ηj=0km=0j(1)jmwmBlm,wm!xΔwj+2yj=0[k12](1)jwj+1xΔw2j+1,k1,(50) and (51) [2ηj=0km=0j(1)jmwmBlm,wm!xΔwj+12ηj=0k(1)jxΔwj+1+(x+w)j=0k(1)jxΔwj+1+wj=0k(1)jxΔwj+2yj=0[k12](1)jwj+1xΔw2j+2(k+1)w]×Blk[2]=0,k1(51)

where Blm,w are the degenerate Boole numbers in (Equation48), respectively.

Corollary 4.9

The IPLO, IPRO and IPDE satisfied by the TI degenerate Gould–Hopper Boole polynomials are as follows: (52) Lk:=1kxΔw1yΔw(52) (53) Lk+:=[(x2η)j=0k(w)jxΔwjyΔwj+2ηj=0km=0j(w)jmBlm,wm!xΔwjyΔwj+2yj=0[k12](w)jxΔw(2j+1)yΔw2j+1],k1(53) and (54) [(x2η)j=0k(w)jxΔwjyΔwj+1+2ηj=0km=0j(w)jmBlm,wm!xΔwjyΔwj+1+2(y+w)j=0[k12](w)jxΔw(2j+1)yΔw2j+2+2wj=0[k12](w)jxΔw(2j+1)yΔw2j+1(k+1)xΔw]×Blk[2]=0,k1,(54) where Blm,w are the degenerate Boole numbers in (Equation48), respectively.

4.4. TI degenerate Gould–Hopper Poisson–Charlier–Boole polynomials

The TI Gould–Hopper Poisson–Charlier–Boole polynomials cBlk[2](x,y;w;α;η):=cBlk[2] are defined as follows: (55) eαwz(11+(1+wz)ηw)(1+wz)xw(1+wz2)yw=k=0cBlk[2]zkk!,(55) where a1(z)=eαwzanda2(z)=11+(1+wz)ηw.

Corollary 4.10

The recurrence relation satisfied by the TI degenerate Gould–Hopper Poisson–Charlier–Boole polynomials are as follows: (56) cBlk+1[2]=αwcBlk[2]ηj=0k(kj)(w)jj!cBlkj[2]+ηj=0km=0j(kj)(w)jmj!Blm,wm!cBlkj[2]+xj=0k(w)jk!(kj)!cBlkj[2]+2yj=0[k12](w)jk!(k2j1)!cBlk2j1[2],k1(56) where Blm,w are the degenerate Boole numbers in (Equation48), respectively.

Corollary 4.11

The LO, RO and DE satisfied by the TI degenerate Gould–Hopper Poisson–Charlier–Boole polynomials are as follows: (57) Lk:=1kwxΔw,(57) (58) Lk+:=αw+(xη)j=0k(1)jxΔwj+ηj=0km=0j(1)jmwmBlm,wm!xΔwj+2yj=0[k12](1)jwj+1xΔw2j+1,k1(58) and (59) [αwxΔwηj=0k(1)jxΔwj+1+ηj=0km=0j(1)jmwmBlm,wm!xΔwj+1+(x+w)j=0k(1)jxΔwj+1+wj=0k(1)jxΔwj+2yj=0[k12](1)jwj+1xΔw2j+2(k+1)w]cBlk[2]=0,k1(59) where Blm,w are the degenerate Boole numbers in (Equation48), respectively.

Corollary 4.12

The IPLO, IPRO and IPDE satisfied by the TI degenerate Gould–Hopper Poisson–Charlier–Boole polynomials are as follows: (60) Lk:=1kxΔw1yΔw,(60) (61) Lk+:=[αw+(xη)j=0k(w)jxΔwjyΔwj+ηj=0km=0j(w)jmBlm,wm!xΔwjyΔwj+2yj=0[k12](w)jxΔw(2j+1)yΔw2j+1],k1(61) and (62) [αwyΔw+(xη)j=0k(w)jxΔwjyΔwj+1+ηj=0km=0j(w)jmBlm,wm!xΔwjyΔwj+1+2(y+w)j=0[k12](w)jxΔw(2j+1)yΔw2j+2+2wj=0[k12](w)jxΔw(2j+1)yΔw2j+1(k+1)xΔw]×cBlk[2]=0,k1(62) where Blm,w are Boole numbers in (Equation48), respectively.

5. Conclusion

In this paper, we introduce the sequence of TI-DGHAP. We prove an equivalence theorem for TI-DGHAP. We find some of their characteristic properties such as explicit representation, determinantal representation, recurrence relation, LO, RO, DE, IPLO, IPRO and IPDE. We present TI degenerate Gould–Hopper Bernoulli polynomials, TI degenerate Gould–Hopper Poisson–Chalier polynomials, TI degenerate Gould–Hopper Boole polynomials and TI degenerate Gould–Hopper Poisson–Charlier–Boole polynomials for special cases of TI-DGHAP.

Corresponding to the same idea, we can define the r-iterated Δw-GHAP Ak[r](x,y;w):=Ak[r] by the generating function given by (63) [ar(z)ar1(z)a3(z)a2(z)a1(z)(1+wz)xw×(1+wz2)yw]=k=0Ak[r]zkk!.(63) The investigation of the polynomials in (Equation63) will give rise to many interesting and potentially useful results and left as a future work.

Acknowledgments

We would like to thank the editor and reviewers for their valuable suggestions and comments.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

We would like to thanks the Scientific and Technological Research Council of Türkiye (TÜBİTAK) for the TÜBİTAK BİDEB 2211-A General Domestic Doctorate Scholarship Program that supported the first author.

References

  • Sheffer IM. Note on Appell polynomials. Bull Am Math Soc. 1945;51(10):739–744. doi: 10.1090/bull/1945-51-10
  • Appell P. Sur une classe de pólynomes. Ann Sci De L'Ecole Norm Supérieure. 1880;9:119–144. doi: 10.24033/asens.186
  • He M-X, Ricci PE. Differential equation of Appell polynomials via the factorization method. J Comput Appl Math. 2002;139:231–237. doi: 10.1016/S0377-0427(01)00423-X
  • Khan S, Yasmin G, Khan R, et al. Hermite-based Appell polynomials: properties and applications. J Math Anal Appl. 2009;351:756–764. doi: 10.1016/j.jmaa.2008.11.002
  • Khan S, Al-Saad MW, Khan R. Laguerre-based polynomials: properties and applications. Math Comput Model. 2010;52:247–259. doi: 10.1016/j.mcm.2010.02.022
  • Khan S, Raza N. 2-iterated Appell polynomials and related numbers. Appl Math Comput. 2013;219:9469–9483.
  • Costabile F. Modern umbral calculus: an elementary introduction with applications to linear interpolation and operator approximation theory. Berlin (Germany): Walter de Gruyter GmbH and Co KG; 2019.
  • Özarslan MA, Yılmaz B. A set of finite order differential equations for the Appell polynomials. J Comput Appl Math. 2014;259:108–116. doi: 10.1016/j.cam.2013.08.006
  • Srivastava HM, Özarslan MA, Yılmaz B. Some families of differential equations associated with the Hermite-based Appell polynomials and other classes of Hermite-based polynomials. Filomat. 2014;28:695–708. doi: 10.2298/FIL1404695S
  • Yılmaz B, Özarslan MA. Differential equations for the extended 2D Bernoulli and Euler polynomials. Adv Differ Equ. 2013;107:1–16.
  • Khan S, Yasmin G, Ahmad N. A note on truncated exponential-based Appell polynomials. Bull Malays Math Sci Soc. 2017;40:373–388. doi: 10.1007/s40840-016-0343-1
  • Pintér Á, Srivastava HM. Addition theorems for the Appell polynomials and the associated classes of polynomial expansions. Aequ Math. 2013;85:483–495. doi: 10.1007/s00010-012-0148-8
  • Costabile FA, Longo E. Δh-Appell sequences and related interpolation problem. Numer Algorithms. 2013;63:165–186. doi: 10.1007/s11075-012-9619-1
  • Srivastava HM, Ricci PE, Natalini P. A family of complex Appell polynomial sets. RACSAM. 2019;113:2359–2371. doi: 10.1007/s13398-018-00622-z
  • Srivastava HM, Özaraslan MA, Yaşar BY. Difference equations for a class of twice-iterated Δh-Appell sequences of polynomials. RACSAM. 2019;113:1851–1871. doi: 10.1007/s13398-018-0582-0
  • Srivastava HM, Yasmin G, Muhyi A, et al. Certain results for the twice-iterated 2D q-Appell polynomials. Symmetry. 2019;11(10):1307. doi: 10.3390/sym11101307
  • Srivastava HM, Yasmin G, Muhyi A, et al. q-Difference equations for the 2-iterated q-Appell and mixed type q-Appell polynomials. Arab J Math. 2019;8:63–77. doi: 10.1007/s40065-018-0211-y
  • Jordan C. Calculus of finite differences. New York: Chelsea Publishing Company; 1965.
  • Appell P, Kampé de Fériet J. Fonctions hypergéométriques et hypersphériques. Polynomes d' Hermite. Paris: Gauthier-Villars; 1926.
  • Gould HW, Hopper AT. Operational formulas connected with two generalization of Hermite polynomials. Duke Math J. 1962;29(1):51–63. doi: 10.1215/S0012-7094-62-02907-1
  • Srivastava HM, Manocha HL. A treatise on generating functions. New York: John Wiley and Sons/Ellis Horwood; 1984.
  • Srivastava HM. An introductory overview of bessel polynomials, the generalized bessel polynomials and the q-Bessel polynomials. Symmetry. 2023;15:822. doi: 10.3390/sym15040822
  • Khan S, Raza N. General-Appell polynomials within the context of monomiality principle. Int J Anal. 2013: 1–11. Article ID 328032. Hindawi Publishing Corporation. doi: 10.1155/2013/328032
  • Özarslan MA, Yaşar BY. Δh-Gould-Hopper Appell polynomials. Acta Math Sci. 2021;41B(4):1196–1222. doi: 10.1007/s10473-021-0411-y
  • Carlitz L. Degenerate stirling, Bernoulli and Eulerian numbers. Util Math. 1979;15:51–88.