99
Views
12
CrossRef citations to date
0
Altmetric
Articles

Fe(III) removal by activated carbon produced from Egyptian rice straw by chemical activation

, &
Pages 3159-3168 | Received 24 Dec 2012, Accepted 09 Apr 2013, Published online: 07 Aug 2013
 

Abstract

The present work explored the use of Egyptian rice straw, an agricultural waste that leads to global warming problem through brown cloud, as a potential feedstock for the preparation of activated carbon. Chemical activation of this precursor using two different methods was adopted. The produced activated carbon was fully characterized considering its adsorption properties, as well as its chemical structure and morphology. Application of using the produced activated carbon and raw rice straw for removal of the Fe(III) was evaluated in a batch operation system. The results indicated that the rate of uptake of the Fe(III) is rapid in the beginning and 80% adsorption is completed within 50 min, and the time required for equilibrium adsorption is 60 min. The removal efficiency of Fe(III) depends on the pH of the solution. The optimal Fe(III) removal efficiency occurs at pH 5. The adsorption isotherm analysis showed that the Freundlish isotherm provides a good model for the sorption system. The 1/n is lower than 1.0, indicating that Fe(III) is favorably adsorbed by activated carbon.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.