39
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Faster Approximation of Minimum Enclosing Balls by Distance Filtering and GPU Parallelization

&
Pages 67-84 | Received 18 Sep 2014, Accepted 31 Mar 2015, Published online: 09 Jul 2015
 

Abstract

Minimum enclosing balls are used extensively to speed up multidimensional data processing in, e.g., machine learning, spatial databases, and computer graphics. We present a case study of several acceleration techniques that are applicable in enclosing ball algorithms based on repeated farthest-point queries. Two different distance filtering heuristics are proposed aiming at reducing the cost of the farthest-point queries as much as possible by exploiting lower and upper distance bounds. Furthermore, auto-tunable GPU solutions using CUDA are developed for both low- and high-dimensional cases. Empirical tests apply these techniques to two recent algorithms and demonstrate substantial speedups of the ball computations. Our results also indicate that a combination of the approaches has the potential to give further performance improvements.

Additional information

Funding

Both authors are supported by a research grant from the Swedish Foundation for Strategic Research (No. IIS11-0060).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.