93
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Parametric optimization of 3D-printed PLA part using response surface methodology for mechanical properties

ORCID Icon, &
Pages 91-104 | Received 06 Mar 2023, Accepted 10 Oct 2023, Published online: 17 Oct 2023
 

ABSTRACT

The present study aimed to optimize the composition of 3D printing critical process parameters (nozzle temperature, layer thickness, and printing speed) to maximize the tensile strength and flexural strength of the biodegradable 3D printed PLA specimen using response surface methodology. For this purpose, after using the CCD of experiments with three independent parameters with two levels, 20 flat PLA parts were produced with an FDM-based 3D printer. The mechanical behavior of the 3D-printed PLA part was investigated, and a model was developed from the three parameters to get the scientific information to optimize the responses. As a result, it was noticed that the layer thickness and nozzle temperature greatly influenced mechanical response. One of the major aspects of the coronary stent is the mechanical behavior should be in accordance with the medical requirements such as flexibility, which is very necessary to facilitate the placement of the vessel in the artery, and sufficient radial rigidity is also required to support the vessel. Based on this aspect the identified responses are tensile and flexural strength.

GRAPHICAL ABSTRACT

Acknowledgments

The support from Amity University CAM LAB is gratefully acknowledged.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Author(s) contribution

Author(s) contribution in the manuscript entitled ‘Prediction of Mechanical Properties of FDM printed PLA parts using response surface methodology’ is as follows: Ayushi Thakur is a Research Scholar at Amity University Uttar Pradesh, Noida, India. She is pursuing Ph.D. in Mechanical Engineering. She has done the experimental investigation of optimization parameters for 3D printed parts using Minitab software. Dr. Umesh Kumar Vates is an Associate professor at the Mechanical Engineering Department of Amity University, Uttar Pradesh, India. He has completed his Ph.D. in Mechanical Engineering from IIT Dhanbad (An Institute of National Importance). His role is as an expert in this work while monitoring and motivating the above PhD scholar. He has suggested the optimization technique in this research work. Dr. Sanjay Mishra is an Associate Professor at Madan Mohan Malviya University of Technology, Gorakhpur, India. He has motivated the above PhD scholar and interpreted the optimized results.

Future Scope of the work

In the future, further efforts will be dedicated to Design optimizations of PLA stent structure by FEM and investigating its function in a simulated plaque artery.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.