122
Views
53
CrossRef citations to date
0
Altmetric
Review

Thiazolidinediones – some recent developments

Pages 1179-1187 | Published online: 02 Mar 2005
 

Abstract

The role of thiazolidinediones (currently rosiglitazone and pioglitazone) in the treatment of Type 2 diabetes is firmly established. The mechanism of action involves binding to the peroxisome proliferator-activated receptor-γ, a transcription factor that regulates the expression of specific genes especially in fat cells but also other cell types such as endothelial cells, macrophages and monocytes, vascular smooth muscle cells and colonic epithelium. Thiazolidinediones have been shown to interfere with expression and release of mediators of insulin resistance originating in adipose tissue (e.g., increased free fatty acids, decreased adiponectin) in a way that results in net improvement of insulin sensitivity (i.e., in muscle and liver). A direct or indirect effect on AMP-dependent protein kinase may also be involved. Prevention of lipid accumulation in tissues critical to glycaemia such as visceral adipocytes, liver, muscle and β-cells at the expense of lipids accumulating at the less harmful subcutaneous site may be central to their net metabolic effect. The sustained beneficial effect of troglitazone on β-cell function in women with previous gestational diabetes in addition to the insulin-sensitising properties point to an important role of this class of drugs in the prevention of Type 2 diabetes. Original safety concerns based on animal and in vitro studies (e.g., fatty bone marrow transformation, colonic cancer, adipogenic transdifferentiation of blood cells) remain theoretical issues but become less pressing practically with prolonged uneventful clinical use. Hepatotoxicity for troglitazone and fluid retention, which can aggravate pre-existing heart failure, are the most important side effects. In summary, with the thiazolidinediones, a novel concept for the treatment of insulin resistance and possibly preservation of β-cell function is available that could become effective in the prevention of Type 2 diabetes. Moreover, their anti-inflammatory properties also make them interesting in the prevention and treatment of atherosclerosis and possibly other inflammatory conditions (e.g., inflammatory bowel disease). Long-term data will be necessary for a final risk-benefit assessment of these substances.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.