259
Views
35
CrossRef citations to date
0
Altmetric
Review

Manipulation of the nerve growth factor network in prostate cancer

, &
Pages 303-309 | Published online: 16 Feb 2007
 

Abstract

Autocrine and paracrine events regulated by nerve growth factor (NGF) and relevant receptors (low- and high affinity; p75 neurotrophin receptor [p75NTR] and TrkA, respectively) seem to play a significant role in prostate carcinogenesis. Studies reveal that p75NTR is both a tumor suppressor of growth and a metastasis suppressor of human prostate cancer cells. Furthermore, p75NTR is progressively lost during prostate carcinogenesis. An imbalance between p75NTR and tropomyosin receptor kinase A (TrkA)-mediated signals may be involved in the progression of prostate cancer through increased proliferation and reduced apoptosis. The antiproliferative and apoptotic effects of GnRH analogs in prostate cancer cells may be mediated by altering the TrkA:p75NTR NGF receptor ratio. Administration of NGF induces a reversion of the androgen-independent/androgen receptor-negative prostate cancer cell lines to a less malignant phenotype. Finally, Trk inhibition is a novel, attractive and rational approach for prostate cancer therapy. This review unravels the NGF ‘circuitry’ in prostate cancinogenesis for relevant pharmacologic manipulation to lead to the development of novel therapeutic agents.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.