18
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

An algebraic model of high-altitude aircraft decompression and emergency descent

Pages 92-101 | Received 20 Jul 2017, Accepted 12 Sep 2017, Published online: 05 Oct 2017
 

Abstract

An emergency descent maneuver initiated by pilots shortly after the onset of the decompression recognition was developed for subsonic, supersonic and hypersonic cruisers. Among other findings, the times when a passenger cabin is exposed to altitudes above 25,000 and 40,000 ft and the maximum cabin altitude reached are estimated. An airplane descent aerodynamic model was incorporated for high-speed and low-speed high-drag emergency descents. Airplane cabin atmosphere is assumed to be isothermal. The environmental atmosphere is simulated using the NLPAM nonlinear atmospheric model valid up to 47 geopotential kilometers. Rapid and slow decompressions at several discrete cruising altitudes ranging from 12 to 40 km and varying pilot reaction times in initiating the emergency descent were simulated. The main motivation for this work was to estimate times and altitudes a cabin reaches during depressurization for various flight conditions. This model can be utilized in optimizing the emergency-descent piloting techniques, calculating oxygen supplies, evaluating aeromedical factors, estimating harmful exposures to low pressures, and for other important high-altitude aircraft operations.

Additional information

Notes on contributors

Nihad E. Daidzic

Nihad E. DAIDZIC is the president of AAR Aerospace Consulting, L.L.C. He is also a full professor of Aviation, adjunct professor of Mechanical Engineering, and research graduate faculty at Minnesota State University. His PhD is in fluid mechanics and ScD in mechanical engineering. He was formerly a staff scientist at the National Center for Microgravity Research and the National Center for Space Exploration and Research at NASA Glenn Research Center in Cleveland, OH. He also held various faculty appointments at Vanderbilt University, University of Kansas, and Kent State University. His current research interest is in theoretical, experimental, and computational fluid dynamics, micro- and nano-fluidics, aircraft stability, control, and performance, mechanics of flight, piloting techniques, and aerospace propulsion. Dr. Daidzic is an FAA certified Airline Transport Pilot and an FAA certified “Gold Seal” flight instructor with flight experience in airplanes, helicopters, and gliders.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.