Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 122, 2024 - Issue 6
67
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The dynamic studies of the C+ + HD reaction using the time-dependent wave packet method

&
Article: e2266512 | Received 27 Jul 2023, Accepted 28 Sep 2023, Published online: 10 Oct 2023
 

Abstract

The dynamic calculations of the C+ + HD (v0 = 0, j0 = 0) → D/H + CH+/CD+ reaction in the collision energy range of 0.001–1.80 eV are carried out by using a time-dependent wave packet. The intramolecular isotope effect of the C+ + HD reaction is discussed in detail. Some meaningful dynamic properties of the C+ + HD reaction are reported and compared with available theoretical and experimental results. The results indicated that present values are, in general, in better agreement with experimental data than previous theoretical reports. However, due to the lack of consideration of rotational excitation of reactant and non-adiabatic effect, the present results are always smaller than the experimental results. Differential cross-sections of the D + CH+ and H + CD+ product channels exhibit forward–backward symmetric behaviour, which indicates that the ‘complex-forming’ mechanism plays a dominant role in the reaction.

Highlights

  1. The dynamic calculations of the C+ + HD (v0 = 0, j0 = 0) → D/H + CH+/CD+ reaction are performed using a time-dependent wave packet method based on the newly reported potential energy surface.

  2. The dynamicl properties, such as integral cross-sections, rate constants, etc., are calculated and compared with previous theoretical and experimental results.

  3. The rovibrational state distributions of the product are reported.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work is supported by Key Projects of Science and Technology in the 13th Five Year Plan of Jilin Provincial Department of Education (grant number JJKH20200482KJ) and Jilin Province Science and Technology Department Program (grant number 20220101024JC).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 886.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.