114
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Economic particulate transport performance analysis of k-epsilon models in highly concentrated slurry through pipelines

&
Pages 668-687 | Published online: 11 Nov 2023
 

Abstract

The paper analyzed the economic transporting performance of k-epsilon turbulence models using the Eulerian two-fluid approach in transporting highly concentrated fine particulate slurry through horizontal pipelines using Kaushal et al. (Citation2005) experimental data of glass beads slurry of 125 μm mean diameter for volumetric concentration ranging 30%–52% and flow velocity ranging 2–5 m/s. The primary components of economical slurry transport are Specific Energy consumption (SEC) and pressure drop; both have been examined in the performance of different κ-ϵ models and are yet to be unlighted on these parameters. The CFD model found the excellent performance of all k-epsilon models with slightly more effectiveness in the case of the Realizable κ-ϵ model. The analyzed and validated CFD model was subsequently used in examining the parameters of slurry flow, such as the secondary phase velocity, concentration distribution, and SEC analysis for the range of fine particles 125, 150, and 212 µm. The plotted contours from CFD are useful in visualizing slurry flow parameters at intermediates inlet values for slurry inlet flow velocity ranging 2–6 m/s and inlet volumetric concentration ranging 30%–55% for fine particles. Analysis revealed that the highly concentrated fine particles slurry transported at optimum volumetric concentration range of 40–45% are economical slurry transport.

Acknowledgment

The first author is highly grateful to Punjab Engineering College (Deemed to be University) Chandigarh, India, for sponsoring his doctoral studies at the Indian Institute of Technology Delhi. The authors are highly grateful to the Indian Institute of Technology Delhi for providing the required research facilities for the study.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.