142
Views
0
CrossRef citations to date
0
Altmetric
Fundamental Research / Recherche fondamentale

Numerical Investigation of Diapycnal Mixing of the Kitikmeot Sea in the Southern Canadian Arctic Archipelago

, , , & ORCID Icon
Pages 206-221 | Received 27 Mar 2023, Accepted 04 Dec 2023, Published online: 20 Dec 2023
 

ABSTRACT

Utilizing a 1/12 numerical model, we examine the diapycnal mixing patterns in the Kitikmeot Sea, a semi-enclosed water body within the southern Canadian Arctic Archipelago. The analysis reveals that mixing intensity near the sea surface varies seasonally, with effective diffusivity values ranging from 105 to 103m2s1, while away from the surface, the effective diffusivity remains relatively stable between 105 and 104m2s1. The seasonal fluctuations in surface mixing intensity are strongly influenced by ice coverage, which impacts both the stratification and the energy input to the surface driving the mixing process. Mixing energetics analysis indicates that the majority of energy contributing to the mixing processes are applied to the sea surface. During ice-free periods, wind-driven stirring dominates near-surface mixing with effective diffusivities of 105 to 104m2s1. Minimum near-surface effective diffusivity values occur in July and August, when the surface water is fresher and near-surface stratification is stronger due to spring freshet. Conversely, during ice-covered seasons, surface cooling and brine rejection primarily drive near-surface mixing, leading to effective diffusivities of 103m2s1 or higher. In most cases, the observed mixing efficiency is within the range of what has been found in other regions of the Arctic Ocean.

RÉSUMÉ

[Traduit par la rédaction] En utilisant un modèle numérique 1/12, nous examinons les schémas de mélange diapycniques dans la mer de Kitikmeot, une masse d'eau semi-fermée située dans le sud de l'archipel Arctique canadien. L'analyse révèle que l'intensité du mélange près de la surface de la mer varie selon les saisons, avec des valeurs de diffusivité effective allant de 105 à 103m2s1, tandis que loin de la surface, la diffusivité effective reste relativement stable entre 105 et 104m2s1. Les fluctuations saisonnières de l'intensité du mélange de surface sont fortement influencées par la couverture de glace, qui a une incidence à la fois sur la stratification et sur l'apport d'énergie à la surface qui alimente le processus de mélange. L'analyse énergétique du mélange indique que la majorité de l'énergie contribuant aux processus de mélange est appliquée à la surface de la mer. Pendant les périodes sans glace, l'agitation causée par le vent domine le mélange près de la surface avec des diffusivités effectives de 105 à 104m2s1. Les valeurs minimales de diffusivité effective près de la surface se produisent en juillet et en août, lorsque les eaux de surface sont plus fraîches et que la stratification près de la surface est plus forte en raison de la crue printanière. Inversement, pendant les saisons où la glace est présente, le refroidissement de la surface et le rejet de saumure sont les principaux moteurs du mélange près de la surface, ce qui conduit à des diffusivités effectives de 103m2s1 ou plus. Dans la plupart des cas, l'efficacité de mélange observée se situe dans la fourchette de ce qui a été trouvé dans d'autres régions de l'océan Arctique.

Acknowledgments

This research was enabled in part by support provided by Westgrid and the Digital Research Alliance of Canada.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes

1 Mixing efficiency, as defined by Gregg et al. (Citation2018), is “the ratio of the net change in potential energy to the energy expended in producing the mixing.” Various energy sources may yield varying mixing efficiency values which we tabulate in .

Additional information

Funding

Financial support was provided by the Marine Environmental Observation Prediction and Response (MEOPAR) network and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 80.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.