147
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

3-D scanned oven geometry improves the modeling accuracy of the solid-state microwave heating process

, , , , , & ORCID Icon show all
Pages 247-263 | Received 14 Jun 2023, Accepted 23 Aug 2023, Published online: 15 Oct 2023
 

Abstract

Solid-state-based microwave ovens are promising to mitigate the non-uniformity issue for their precise controlled microwave parameters. Multiphysics modeling is a useful tool for understanding complicated microwave heating processes. However, previous models using simple or manually measured oven geometry had challenges in accurately predicting the heating patterns. This study developed a 3-D scanning approach to characterize the accurate geometric details of the cavity and incorporate it in the multiphysics modeling of solid-state microwave heating. The effect of oven geometric details on modeling accuracy was evaluated for models using the simple box, manually measured, and 3-D scanned geometries at multiple microwave frequencies and port locations. A quantitative approach was also developed to replace the previously often-used qualitative approach to compare the spatial temperature profiles between the simulation and experiments. The Multiphysics-based models using 3-D scanned geometry showed significantly or considerably smaller RMSE values (1.57 to 4.11 °C) than the models with simple box geometry (1.73 to 6.33 °C) and manually measured geometry (1.48 to 4.66 °C) at most heating scenarios. The 3-D scanned approach can accurately incorporate the irregular geometric details of the oven cavity and can improve the prediction accuracy of microwave heating models for future food products and oven development.

Acknowledgements

This study is based on research that the Tennessee Agricultural Experiment Station supported with funding from the USDA National Institute of Food and Agriculture Hatch Multistate Research capacity funding program (Accession Number 1023982) and the USDA National Institute of Food and Agriculture AFRI project (Grant No: 2021-67017-33444).

Disclosure statement

The authors declare no conflict of interest.

Data availability

Data will be made available on request

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 256.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.