143
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Long-term creep behaviours and structural stabilities of austenitic heat-resistant stainless steels

, &
Pages 61-72 | Received 07 Mar 2023, Accepted 30 Aug 2023, Published online: 27 Sep 2023
 

ABSTRACT

For heat resistant alloys, long-term structural stability at high temperatures is a critical issue for alloy design and applications. In this paper, the long-term creep behaviours and structural stabilities of six heat resistant high Ni alloys and austenitic stainless steels have been studied. The longest creep rupture life is up to 359 283 hours. High Ni and Cr alloys show a good combination of high creep and oxidation resistances. Precipitation of nano MX particles with a very low growth rate improves long-term creep resistance at high temperatures. Long-term stable multiple nanoprecipitates of MX, Cu-rich, Laves and M23C6 phases can greatly contribute to the creep strength. Low Ni austenitic stainless steels show comparatively low oxidation and creep resistances. It was first found that at 800°C, Cr2N could form in the low Ni steel with a long-term crept by the absorption of nitrogen from the air into the matrix.

Acknowledgments

This paper is published by permission of Alleima EMEA AB. The supports of Dr Tom Eriksson and Mr Martin Östlund are greatly acknowledged.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.