117
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biomechanics of calcaneus impacted by talus: a dynamic finite element analysis

, ORCID Icon, , , &
Pages 897-904 | Received 24 Jan 2023, Accepted 02 May 2023, Published online: 17 May 2023
 

Abstract

This paper aimed to investigate the biomechanical changes during the talus impact with the calcaneus at varying velocities. Various three-dimensional reconstruction software was utilized to construct a finite element model that consisted of the talus, calcaneus, and ligaments. The explicit dynamics method was used to explore the process of the talus impacting on the calcaneus. The velocity of impact was altered from 5 m/s to 10 m/s with a 1 m/s interval. Stress readings were collected from the posterior, intermediate, and anterior subtalar articular (PSA, ISA, ASA), calcaneocubic articular (CA), Gissane Angle (GA), calcaneal base (BC), medial wall (MW), and lateral wall (LW) of the calcaneus. The changes in the amount and distribution of stress in the different regions of the calcaneus that varied with velocity were analysed. The model was validated through comparison with findings from the existing literature. During the process of impact between the talus and calcaneus, the stress in the PSA reached its peak first. Notably, stress was concentrated mainly in the PSA, ASA, MW, and LW of the calcaneus. At varying impact velocities of the talus, the mean maximum stress of the PSA, LW, CA, BA, and MW exhibited statistically significant differences (P values were 0.024, 0.004, <0.001, <0.001, and 0.001, respectively). However, the mean maximum stress of the ISA, ASA, and GA was not statistically significant (P values were 0.289, 0.213, and 0.087, respectively). In comparison with the velocity at 5 m/s, the mean maximum stress increases in each region of the calcaneus at a velocity of 10 m/s were as follows: PSA 73.81%, ISA 7.11%, ASA 63.57%, GA 89.10%, LW 140.16%, CA 140.58%, BC 137.67%, MW 135.99%. The regions of stress concentration were altered, and the magnitude and sequence of peak stress in the calcaneus also varied according to the velocity of the talus during impact. In conclusion, the velocity of the talus during impact had a significant influence on the magnitude and distribution of stress within the calcaneus, which was a crucial factor in the development of calcaneal fractures. It was possible that the magnitude and sequence of stress peaks played a vital role in determining the emergence of fracture patterns.

Disclosure statement

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.