105
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Knockdown of hCINAP sensitizes colorectal cancer cells to ionizing radiation

, , , , , , & show all
Pages 233-247 | Received 30 Mar 2021, Accepted 08 Nov 2023, Published online: 29 Mar 2024
 

ABSTRACT

Colorectal cancer (CRC) poses a significant challenge in terms of treatment due to the prevalence of radiotherapy resistance. However, the underlying mechanisms responsible for radio-resistance in CRC have not been thoroughly explored. This study aimed to shed light on the role of human coilin interacting nuclear ATPase protein (hCINAP) in radiation-resistant HT-29 and SW480 CRC cells (HT-29-IR and SW480-IR) and investigate its potential implications. Firstly, radiation-resistant CRC cell lines were established by subjecting HT-29 and SW480 cells to sequential radiation exposure. Subsequent analysis revealed a notable increase in hCINAP expression in radiation-resistant CRC cells. To elucidate the functional role of hCINAP in radio-resistance, knockdown experiments were conducted. Remarkably, knockdown of hCINAP resulted in an elevation of reactive oxygen species (ROS) generation upon radiation treatment and subsequent activation of apoptosis mediated by mitochondria. These observations indicate that hCINAP depletion enhances the radiosensitivity of CRC cells. Conversely, when hCINAP was overexpressed, it was found to enhance the radio-resistance of CRC cells. This suggests that elevated hCINAP expression contributes to the development of radio-resistance. Further investigation revealed an interaction between hCINAP and ATPase family AAA domain containing 3A (ATAD3A). Importantly, ATAD3A was identified as an essential factor in hCINAP-mediated radio-resistance. These findings establish the involvement of hCINAP and its interaction with ATAD3A in the regulation of radio-resistance in CRC cells. Overall, the results of this study demonstrate that upregulating hCINAP expression may improve the survival of radiation-exposed CRC cells. Understanding the intricate molecular mechanisms underlying hCINAP function holds promise for potential strategies in targeted radiation therapy for CRC. These findings emphasize the importance of further research to gain a comprehensive understanding of hCINAP’s precise molecular mechanisms and explore its potential as a therapeutic target in overcoming radio-resistance in CRC. By unraveling the complexities of hCINAP and its interactions, novel therapeutic approaches may be developed to enhance the efficacy of radiation therapy and improve outcomes for CRC patients.

Highlights

  1. Radiation treatment increased hCINAP expression in CRC cells.

  2. hCINAP enhanced radio-resistance in CRC cells.

  3. hCINAP knockdown elevated radio-induced ROS production.

  4. hCINAP regulated radio-induced apoptosis by interacting with ATAD3A.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 251.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.