545
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterization of bio-lubricants with nanoparticles additives

, ORCID Icon & ORCID Icon
Pages 3684-3706 | Received 22 Nov 2023, Accepted 01 Feb 2024, Published online: 13 Mar 2024

Figures & data

Table 1. Main parameters and their levels considered for epoxidation reaction.

Figure 1. Removal of glycerol from bio-diesel.

Figure 1. Removal of glycerol from bio-diesel.

Figure 2. Formation of aqueous layer.

Figure 2. Formation of aqueous layer.

Table 2. Physicochemical properties of jatropha and jojoba bio-lubricants (Cecilia et al. Citation2020; Mushtaq and Hanief Citation2021) and (Hassan, Hassan, and Youssif Citation2019.).

Table 3. Uncertainty of the instruments used in the study.

Table 4. Iodine values for different set of test samples.

Table 5. Thermal stability data of different samples based on onset of degradation.

Figure 3. TGA curve for JA.

Epoxidized Jatropha methyl ester with H2SO4 as catalyst (EJA-H2SO4)
Figure 3. TGA curve for JA.

Figure 4. TGA curve for JO.

Epoxidized Jojoba methyl ester with HCl as catalyst (EJO-HCl)
Figure 4. TGA curve for JO.

Figure 5. Tga curve for EJA-H2SO4.

Figure 5. Tga curve for EJA-H2SO4.

Figure 6. Tga curve for EJO-HCl.

Figure 6. Tga curve for EJO-HCl.

Table 6. Dispersion analysis of nanoparticle and TritonX-100 surfactant combinations.

Figure 7. EpoxidizedJatropha methyl ester with dispersion of MWCNT and TiO2nanoparticles.

Figure 7. EpoxidizedJatropha methyl ester with dispersion of MWCNT and TiO2nanoparticles.

Figure 8. EpoxidizedJojoba methyl ester with dispersion of MWCNT and TiO2nanoparticles.

Figure 8. EpoxidizedJojoba methyl ester with dispersion of MWCNT and TiO2nanoparticles.

Table 7. Wavelengths of jatropha methyl ester with MWCNT and TiO2 nanoparticles.

Table 8. Wavelengths of jojoba methyl ester with MWCNT and TiO2 nanoparticles.

Figure 9. AntonPar MCR 92 Rheometer.

Figure 9. AntonPar MCR 92 Rheometer.

Figure 10. Jatropharaw oil sample.

Figure 10. Jatropharaw oil sample.

Figure 11. Temperature-dependent viscosity for JA, EJA-H2SO4,EJA - H2SO4- TiO2and EJA - H2SO4- MWCNT.

Figure 11. Temperature-dependent viscosity for JA, EJA-H2SO4,EJA - H2SO4- TiO2and EJA - H2SO4- MWCNT.

Figure 12. Temperature-dependent viscosity for JA, EJA-HCl, EJA - HCl -.

Figure 12. Temperature-dependent viscosity for JA, EJA-HCl, EJA - HCl -.

Figure 13. Temperaturedependent viscosity for JO, EJO-H2SO4,EJO – H2SO4- TiO2 and EJO- H2SO4- MWCNT.

Figure 13. Temperaturedependent viscosity for JO, EJO-H2SO4,EJO – H2SO4- TiO2 and EJO- H2SO4- MWCNT.

Figure 14. Temperaturedependent viscosity for JO, EJO-HCl, EJO – HCl – TiO2 and EJO- HCl -MWCNT.

Figure 14. Temperaturedependent viscosity for JO, EJO-HCl, EJO – HCl – TiO2 and EJO- HCl -MWCNT.

Figure 15. TRB3Ball on disk tribometers.

Figure 15. TRB3Ball on disk tribometers.

Figure 16. Reciprocating motion of the ball.

Figure 16. Reciprocating motion of the ball.

Table 9. Parameters considered for COF and wear rate analysis.

Table 10. COF and wear rate of the samples.

Figure 17. WearRate of jatropha and jojoba bio-lubricant with TiO2and MWCNT nanoparticles.

Figure 17. WearRate of jatropha and jojoba bio-lubricant with TiO2and MWCNT nanoparticles.

Figure 18. Cof of jatropha and jojoba bio-lubricant with TiO2 and MWCNT nanoparticles.

Figure 18. Cof of jatropha and jojoba bio-lubricant with TiO2 and MWCNT nanoparticles.

Figure 19. (a) 3Dview of the EJA-H2SO4-MWCNTsample. (b) Cross-section of the EJA-H2SO4-MWCNT sample.

Figure 19. (a) 3Dview of the EJA-H2SO4-MWCNTsample. (b) Cross-section of the EJA-H2SO4-MWCNT sample.

Figure 20. (a) 3D view of the EJO-HCl-TiO2 sample. (b) Cross-section of the EJO-HCl-TiO2 sample.

Figure 20. (a) 3D view of the EJO-HCl-TiO2 sample. (b) Cross-section of the EJO-HCl-TiO2 sample.