36
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A Short Appraisal of Biological Macromolecules as Tethering Excipients for Improved Drug Delivery: Current Advances

Pages 604-620 | Received 30 Sep 2023, Accepted 18 Oct 2023, Published online: 03 Nov 2023
 

Abstract

Biological macromolecules, encompassing proteins, nucleic acids, lipids, and carbohydrates, have garnered increasing attention as tethering excipients within the realms of pharmaceuticals and biotechnology. This concise appraisal offers a comprehensive overview of their multifaceted role, highlighting the latest advancements in their applications. Biological macromolecules, long regarded as fundamental components of life, have transitioned into pivotal agents that contribute significantly to drug development, drug formulation stability and the optimization of pharmacokinetic profiles. This review delineates how these macromolecules serve as integral players in the enhancement of drug delivery systems, enabling controlled release, targeted delivery, and improved bioavailability. Furthermore, they play a critical role in the stabilization of sensitive compounds, preserving their efficacy and extending their shelf life. Additionally, the interactions between macromolecules and therapeutic agents are pivotal in mitigating issues of solubility and bioavailability, further propelling their utility as excipients. Despite these promising attributes, challenges such as immunogenicity, scalability, and regulatory compliance persist. Navigating these hurdles necessitates a concerted effort from researchers, engineers, and regulatory bodies alike. In conclusion, biological macromolecules stand as formidable contenders in the field of tethering excipients. Their versatile applications in drug delivery, formulation stability, and pharmacokinetic enhancement hold the promise of revolutionizing the pharmaceutical and biotechnological landscapes. To realize this potential fully, the scientific community must continue to probe their intricacies, address challenges proactively, and foster collaborative efforts to ensure their seamless integration into the future of healthcare and therapeutics. Ultimately, the enduring impact of biological macromolecules on patient care is poised to be transformative and far-reaching.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.