38
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Using machine learning for chemical-free histological tissue staining

&
Received 23 Oct 2023, Accepted 27 Mar 2024, Published online: 22 Apr 2024
 

ABSTRACT

Hematoxylin and eosin staining can be hazardous, expensive, and prone to error and variability. To circumvent these issues, artificial intelligence/machine learning models such as generative adversarial networks (GANs), are being used to ‘virtually’ stain unstained tissue images indistinguishable from chemically stained tissue. Frameworks such as deep convolutional GANs (DCGAN) and conditional GANs (CGANs) have successfully generated highly reproducible ‘stained’ images. However, their utility may be limited by requiring registered, paired images which can be difficult to obtain. To avoid these dataset requirements, we attempted to use an unsupervised CycleGAN pix2pix model(5,6) to turn unpaired, unstained bright-field images into pathologist-approved digitally ‘stained’ images. Using formalin-fixed-paraffin-embedded liver samples, 5µm section images (20x) were obtained before and after staining to create “stained” an “unstained” datasets. Model implementation was conducted using Ubuntu 20.04.4 LTS, 32 GB RAM, Intel Core i7-9750 CPU @2.6 GHz, Nvidia GeForce RTX 2070 Mobile, Python 3.7.11 and Tensorflow 2.9.1. The CycleGAN framework utilized a u-net-based generator and discriminator from pix2pix, a CGAN. The CycleGAN used a modified loss function, cycle consistent loss that assumed unpaired images, so loss was measured twice. To our knowledge, this is the first documented application of this architecture using unpaired bright-field images. Results and suggested improvements are discussed.

Acknowledgements

The CBC STEWARD committee, CBC: Kyle O’Donnell, Pierce Roth, Alvin Liem, Samir Deshpande, Dr. Stan Hulet, Dr. Morgan Minyard, COL Norman Kreiselmeier (APHC).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the DEVCOM CBC STEWARD Committee for internal workforce AI/ML education and small project funding.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 136.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.