303
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Artificial neural network applicability in studying hot deformation behaviour of high-entropy alloys

, ORCID Icon &
Pages 3351-3359 | Received 24 Mar 2023, Accepted 26 Jun 2023, Published online: 10 Jul 2023
 

Abstract

The potentials of artificial neural network (ANN) modelling as a potent machine learning approach for investigating the hot deformation behaviour of high-entropy alloys (HEAs) and multi-principal element alloys during thermomechanical processing are assessed and reviewed. Flow stress of CoCrFeNiMn (FCC Cantor alloy), HfNbTaTiZr (BCC refractory alloy), AlCoCuFeNi, and AlxCoCrFeNi alloys is accurately predicted based on the deformation temperature, strain rate, and strain. Moreover, in comparison with the limited experimental dataset, a significantly larger output dataset can be generated by ANN to gain valuable insights such as prediction of flow stress (and whole dynamic recovery/recrystallisation flow curves), elucidating the microstructural mechanisms such as dynamic precipitation reactions, and obtaining hot working parameters (e.g. deformation activation energy) for different ranges of deformation conditions.

Data availability

The authors stated that the processed data required to reproduce these findings were available in this manuscript.

Ethical statement

The manuscript has been prepared by the contribution of all authors, it is the original authors work, it has not been published before, it has been solely submitted to this journal, and if accepted, it will not be submitted to any other journal in any language.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.