63
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dispersive solid phase extraction using zinc oxide graphitic carbon nitride as sorbent followed by dispersive liquid–liquid microextraction for the determination of organochlorine pesticides from fruit juice samples

ORCID Icon, ORCID Icon & ORCID Icon
Received 18 Aug 2023, Accepted 04 Oct 2023, Published online: 09 Nov 2023
 

ABSTRACT

In the present work, we proposed a novel method; dispersive solid-phase extraction followed by dispersive liquid–liquid microextraction for selective extraction and preconcentration of organochlorine pesticides in fruit juice samples. Parameters affecting the performances of both extraction steps have been rigorously studied and optimized. For the dispersive solid-phase extraction, zinc oxide-graphite carbon nitride was used as a sorbent for the first time. In the extraction, 100 mg of the sorbent was added to an aqueous solution. The content was then vortexed thoroughly to disperse the sorbent into the sample solution and to enhance the transfer of the analytes to the extraction phase (sorbent). The extracted analytes were then desorbed using 500 μL methanol. Subsequently, for the dispersive liquid-liquid microextraction, 50 μL of chloroform (as an extractant) was added to methanol-desorbed analytes and then rapidly injected into 5 mL deionised water. After centrifuging, 35 μL of the sedimented phase was withdrawn into an auto-sampler vial, and then 1 μL was injected into a gas chromatography-mass spectroscopy analysis. Under the optimum conditions, the proposed method showed satisfactory analytical performance characteristics: linearity ranging from 0.1–10.24 µg/L with coefficients of determinations (R2) from 0.9948–0.9995; The limit of detections ranging from 0.004–0.01 µg/L; intra- and inter-day precisions expressed as relative standard deviations ranging from 1.1–7.8%, and extraction recoveries varying from 80.8–109.2%. Generally, the proposed method is selective and efficient for the extraction and preconcentration of the target analytes from fruit juices and related matrices.

Acknowledgments

We are grateful to the College of Natural Sciences, Jimma University for the financial support. Tesfaye, B also acknowledges Dire Dawa University for sponsoring his PhD study.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.