82
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pecan shells-based activated carbon for the removal of copper metal ions: optimization of the adsorption process using a full factorial design

, , , , , , , & show all
Received 06 Nov 2023, Accepted 11 Jan 2024, Published online: 25 Jan 2024
 

ABSTRACT

This work investigates the removal of copper ions (Cu2+) from an aqueous solution by adsorption onto the surface of activated carbon (AC) produced from pecan shells. The research aims to identify a feasible and effective route for cleaning the wastewater from Cu2+. Chemical activation was carried out using sodium hydroxide. The AC physicochemical properties were characterised by scanning electron microscopy, Fourier-transform infrared, X-ray diffraction, and Brunauer-Emmett-Teller for measuring its specific surface area. To obtain a suitable removal of this metal ion, four physicochemical factors, including the contact time (120–360 min) the adsorbent dose (10–100 mg), initial concentration (10–50 mg/L), and pH (2–6) were optimised using the 24-full factorial design approach. A quadratic regression model representing the capacity of Cu2+ adsorption (Qe) was developed and validated by the analysis of variance. This approach was used to determine independent factors’ main and interaction effects on adsorption equilibrium capacity. The results consolidate similar studies showing that all the factors were significant, and the interactions among the factors were also significant. The optimum conditions for circumscribed fractional factorial design were adsorption time (120 min), adsorbent amount (10 mg), initial metal ions (50 mg/L), and pH 6. The pseudo-first-order model correctly describes the adsorption kinetics with Qe, reached 51.41 mg/g. Modeling adsorption isotherms showed that the Freundlich model adequately describes the adsorption process.

Acknowledgments

The Center Research and Development Sonatrach at Boumerdès is sincerely thanked for the performed analyses.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.