32
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced uranium removal from leach liquor using raw and activated sludge as sustainable adsorbents

ORCID Icon
Received 05 Mar 2024, Accepted 02 May 2024, Published online: 14 May 2024
 

ABSTRACT

To eliminate uranium from sulphate leach solution, this study introduces an economical, environmentally friendly adsorbent derived from dewatered municipal sludge (RS) and activated (AS) using calcium oxide. Various analytical methods, including scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), Brunauer – Emmett – Teller (BET) analysis, and X-ray fluorescence spectroscopy (XRF), were employed in the characterisation of both materials. The efficacy of these adsorbents in removing uranium from sulphate leach fluid was systematically explored resulting in the achievement of a maximum adsorption capacity of 33.0 mg g−1 and 60.2 mg g−1 for RS and AS respectively. These adsorption capacity were detected using the following operational parameters: solution pH equals 2.0, 240 min as a contact time between the adsorbent and U(VI) solution, U(VI) initial concentration of 250 mg L−1, adsorbent dosage of 5.0 g L−1 and room temperature. The pseudo-second order kinetic and Langmuir isotherm models were determined to be the most suitable for the U(VI) adsorption process, showing a chemisorption, monolayer, and uniform process for the uranium adsorption by both materials. Using 1.0 M hydrochloric acid, over 96% of the U(VI) was successfully desorbed from the loaded sorbent, and AS sorbent held its stability for six sorption/desorption cycles in a row. Overall, this study offers a promising solution for sewage sludge disposal while addressing economic and environmental concerns.

Disclosure statement

No potential conflict of interest was reported by the author.

Authors contributions

Mahmoud M. El-Maadawy’s contributions to this paper include validation, data curation, and interpretation, as well as writing the original draft and reviewing and editing the manuscript

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author upon reasonable request.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.