90
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Prognosticating the effect of temperature and pH parameters on size and stability of the nanoliposome system based on thermodynamic modeling

, , , , , , , , & show all
Pages 392-409 | Received 18 Aug 2021, Accepted 28 Aug 2022, Published online: 12 May 2023
 

Abstract

The main challenge of using nanoliposome systems is controlling their size and stability. In order to overcome this challenge, according to the research conducted at the Research Centre for New Technologies of Biological Engineering, University of Tehran, a model for predicting the size and stability of nanoliposome systems based on thermodynamic relations has been presented. In this model, by using the presented equations and without performing many experiments in the laboratory environment, the effect of temperature, ionic power and different pH can be considered simultaneously whereas examining the components of size, stability and any feature were considered before. Synthesis and application of liposomal nanocarriers in different operating conditions can be investigated and predicted, and due to the change in temperature and pH, the smallest size of th system can be obtained. In this study, we were able to model the synthesis and storage conditions of liposomal nanocarriers at different temperatures and acidic, neutral and alkaline pHs, based on the calculation of mathematical equations. This model also indicates that with increasing temperature, the radius increases but with increasing pH, the radius first increases and then decreases. Therefore, this model can be used to predict size and stability in different operating conditions. In fact, with this modelling method, there is no need to study through laboratory methods and analysis to determine the size, stability and surface loads, and in terms of Accuracy, time and cost savings are affordable.

Acknowledgements

This research project was financially supported by University of Tehran. The authors thank University of Tehran for providing this grant to finance this research.

Disclosure statement

No potential conflict of interest was reported by authors.

Additional information

Funding

The authors thank University of Tehran for providing this grant to finance this research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,410.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.