87
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Potential for Material Property Characterization Using Physics-Informed Neural Networks and Ultrasonic Wave Data

&
Published online: 05 May 2024
 

ABSTRACT

There is a need for reliable nondestructive test methods that can collect data from structural members and analyze the results in a rapid and efficient manner. Large amounts of test data are needed to achieve such characterization, which provides additional challenges because of their heterogeneity and complexity. Advances in machine learning, in particular physics-informed neural networks (PINN), offer potential to address these problems. PINN is a particular form of artificial neural networks (ANN) and portends notable advantages over traditional measurand analysis or purely data-driven approaches. Here, we explore the potential of heterogeneous material property characterization using PINN and ultrasonic wave data. First, several types of 1-D ultrasonic wave data are numerically simulated for a spatially heterogeneous material, and then PINN is applied to predict wave velocity, defect location, and energy dissipation. Then, three different types of defects are simulated and all defects are detected using the corresponding 2-D ultrasonic wave data and PINN. The presented results demonstrate the promise of PINN to assist with heterogeneous material characterization methods.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 117.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.