57
Views
0
CrossRef citations to date
0
Altmetric
Report

Rupture strength prediction of martensitic power plant steels

, , &
Pages 31-38 | Received 09 Mar 2023, Accepted 15 Aug 2023, Published online: 03 Oct 2023
 

ABSTRACT

The creep resistance of martensitic power plant steels depends strongly on the dispersion of various types of precipitates in the microstructure. Reliable prediction of rupture strength of such alloys thus demands accurate description of the microstructure evolution during service. A material model that calculates the simultaneous precipitation kinetics and hardening in these steels has been reported previously. The creep rupture model reported here is a natural extension of the previous research. This model has been validated against experimental creep rupture data of wide-used 9–12% Cr steels. It allows the effect of variation in alloy conditions, such as composition and heat treatments, on rupture strength to be quantitatively evaluated for a given alloy grade. Results show that such variations can lead to significant differences in the calculated rupture strength, which are believed to be largely responsible for the wide scatter in the experimental data.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.