23
Views
0
CrossRef citations to date
0
Altmetric
Research Article

TriKSV-LG: a robust approach to disease prediction in healthcare systems using AI and Levy Gazelle optimization

, , , &
Received 17 Dec 2023, Accepted 01 Apr 2024, Published online: 30 Apr 2024
 

Abstract

A seamless connection between the Internet and people is provided by the Internet of Things (IoT). Furthermore, lives are enhanced using the integration of the cloud layer. In the healthcare domain, a reactive healthcare strategy is turned into a proactive one using predictive analysis. The challenges faced by existing techniques are inaccurate prediction and a time-consuming process. This paper introduces an Artificial Intelligence (AI) and IoT-based disease prediction method, the TriKernel Support Vector-based Levy Gazelle (TriKSV-LG) Algorithm, which aims to improve accuracy, and reduce the time of predicting diseases (kidney and heart) in healthcare systems. The IoT sensors collect information about patients’ health conditions, and the AI employs the information in disease prediction. TriKSV utilizes multiple kernel functions, including linear, polynomial, and radial basis functions, to classify features more effectively. By learning from different representations of the data, TriKSV better handles variations and complexities within the dataset, leading to more robust disease prediction models. The Levy Flight strategy with Gazelle optimization algorithm tunes the hyperparameters and balances the exploration and exploitation for optimal hyperparameter configurations in predicting chronic kidney disease (CKD) and heart disease (HD). Furthermore, TriKSV's incorporation of multiple kernel functions, combined with the Gazelle optimization strategy, helps mitigate overfitting by providing a more comprehensive search space for optimal hyperparameter selection. The proposed TriKSV-LG method is applied to two different datasets, namely the CKD dataset and the HD dataset, and evaluated using performance measures such as AUC-ROC, specificity, F1-score, recall, precision, and accuracy. The results demonstrate that the proposed TriKSV-LG method achieved an accuracy of 98.56% in predicting kidney disease using the CKD dataset and 98.11% accuracy in predicting HD using the HD dataset.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Ethics approval

This article does not contain any studies with human participants.

Human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Availability of data and material

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Authors’ contributions

All authors agreed on the content of the study. KD, PV, VA, SS and RS collected all the data for analysis. KD agreed on the methodology. KD, PV, VA, SS and RS completed the analysis based on agreed steps. Results and conclusions are discussed and written together. The author read and approved the final manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.