90
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Revolutionising Egyptian pavement design: a comprehensive E* database and advanced modeling approach for contextually informed performance predictions

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Article: 2335308 | Received 02 Jan 2024, Accepted 20 Mar 2024, Published online: 05 Apr 2024
 

ABSTRACT

This research assesses the dynamic modulus (E*) as a pivotal rheological attribute for characterizing viscoelastic behaviour in various indigenous asphalt mixtures across diverse scenarios. An exhaustive investigation involving 32 laboratory-designed asphalt mixes and two field mixes explores the influence of traffic loading patterns, air voids, binder sources, and climatic conditions on E*. Utilizing Superpave gyratory compaction, 68 E*-specimens are compacted and subjected to E*-testing, leading to master curve development. Evaluation of NCHRP 1-37A and NCHRP 1-40D Witczak models demonstrates their fair to excellent accuracy in predicting E* for Egyptian mixes. The NCHRP 1-40D model stands out with an R² of 0.94, showcasing superior accuracy and minimal bias. This study integrates AASHTOW are Pavement ME Design (PMED) to analyse pavement sections, revealing the impact of design factors, characterized by measured E*, on predicted pavement performance, encompassing asphalt concrete rutting, alligator cracking, longitudinal cracking, and terminal international roughness index. The investigation highlights the marginal impact of substituting predicted E* for measured E* on AASHTOWare pavement performance indicators for Egyptian mixes under default binder characteristic values. This research contributes valuable insights into the interplay of E* and pavement performance, facilitating wellinformed decisions in pavement design and analysis across diverse conditions in the Egyptian context.

Acknowledgements

The authors would like to acknowledge the Arab Contractors Company for their logistic support to provide the investigated materials, in terms of the aggregate sources and field asphalt mixtures, which were examined in this study, to the Highway and Airport Engineering Laboratory (H&AEL) at Mansoura University.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The data that support the findings of this study are available on request from the corresponding author.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 225.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.