46
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design of SBS molecular structure and contribution mechanism from its soft and hard segments to modify asphalt

, , , , , , & show all
Article: 2345140 | Received 18 Dec 2023, Accepted 15 Apr 2024, Published online: 03 May 2024
 

ABSTRACT

The excellent performance of SBS-modified asphalt is attributed to the release of the SBS soft segment (PB segment) and hard segment (PS segment) in the asphalt. The release mechanism of the SBS soft and hard segments was studied using MD simulation and laboratory experiments, and the optimal molecular structure of SBS for asphalt modification was determined. MD simulation results revealed that SBS with a higher PS content exhibited better compatibility with asphalt. The larger and stronger molecular aggregates of the PS segment improved the high-temperature shear resistance of the asphalt but reduced the molecular mobility of the system. Additionally, radial distribution function analysis showed varying degrees of aggregation behaviour of asphaltenes with different segment ratios of polymer modifiers. Laboratory experiments were conducted using synthetically prepared SBS modifiers with specific segment ratios, as well as PB and PS monomer modifiers. Conventional tests and rheological experiments indicated that the PB segment improved the low-temperature performance of the asphalt, while the PS segment enhanced its high-temperature performance. The experimental results of the Cole–Cole plots are consistent with the solubility parameter results. Morphological studies revealed a two-phase continuous structure formed between SBS and asphalt when the SBS segment ratio was approximately 30/70.

Acknowledgement

This work was supported by the National Key R&D Program of China (2021YFB2601200) and the National Natural Science Foundation of China (52278451).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 225.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.