49
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Utility of real-world evidence in biosimilar development

, , , , &
Received 07 Sep 2014, Accepted 15 Dec 2014, Published online: 17 Apr 2024
 

ABSTRACT

Biosimilar development refers to the process of creating a biologic drug that is similar to an existing approved biologic drug, also known as a reference drug. Due to the complex nature of biologics drugs and the inherent variability in their manufacturing process biosimilars are not identical but highly similar to the reference drug in terms of quality, safety, and efficacy. Efficacy and safety trials for biosimilars involve large numbers of patients to confirm comparable clinical performance of the biosimilar and the reference product in appropriately sensitive clinical indications and for appropriate sensitive endpoints. The objective of a biosimilar clinical data is to address slight differences observed at previous steps and to confirm comparable clinical performance of the biosimilar and the reference product. In recent years with advances in big data computing, there has been increasing interest to incorporate the totality of information from different data sources (e.g. Real World data and published literature) in design and conduct of clinical trial to support regulatory objectives. The biosimilar development is an ideal framework for utilization of Real-World Evidence in design of trials as potentially large amount of data are available for the reference dug. Hence there may be an opportunity to use RWD in establishing, improving or validating equivalence margins (EQM) for biosimilar designs, specifically in the case there is no historical published data in the intended sensitive population. In this article, we propose a variation of matching method that seems promising to identify the matched set from a real-world data for which the effect size of targeted endpoint would be comparable to historical data. We believe this is a reasonable approach because in design stage, we can view covariates and secondary endpoints as data feature that can be used in a matching method. This approach was illustrated through a case study which indicated the estimate of the primary endpoint is within 1% of published results and thus RWD may be used to justify or estimate the equivalence margin. To ensure consistent results we recommend using this approach in different indications and endpoint scenarios. Thus utilization of RWD/RWE can provide an important opportunity to increase access to biologic therapies, reducing cost by repurposing existing data.

Acknowledgements

The authors would like to extend their appreciation to Dr. Arne Ring (Head of biostatistics at Sandoz) for continual supports and resources for this project and acquisition of appropriate RWD’s. The findings and conclusions in this article represent the views solely of the authors and do not necessarily represent their respective affiliations. Lastly, we thank the anonymous reviewers for their valuable comments and insights.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 717.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.