2
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Dynamics of Anisotropic Migrations of Exciton and Phonon in Dendrimer Systems

&
Pages 641-646 | Published online: 18 Oct 2010
 

Abstract

We discuss the mechanism of the intramolecular energy migrations of exciton and phonon in compact dendrimer systems. For the exciton migration, we investigate the temporal behavior of a photogenerated exciton in this molecule using a -electrons model Hamiltonian. The calculated results show that the photogenerated exciton in the dendrimeric framework tends to migrate outside via the through-bond interaction between bonded units, and then the exciton moves around the outer side via the through-space interaction with outside units. For the phonon migration, we consider the dynamical nature of a vibrational energy transfer in the dendrimeric framework using a classical oscillator model. The calculated results conclude that the most of the phonons emitted at the periphery of the dendrimer can migrate to the core efficiently, and it can be saved in the inner region for a long time. These results qualitatively clarify rather diverse experimental phenomena observed in the compact dendrimers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.