121
Views
0
CrossRef citations to date
0
Altmetric
Machine Learning

Bootstrap Confidence Regions for Learned Feature Embeddings

Pages 1337-1347 | Received 22 Feb 2021, Accepted 26 Mar 2023, Published online: 15 May 2023
 

Abstract

Algorithmic feature learners provide high-dimensional vector representations for non-matrix structured data, like image or text collections. Low-dimensional projections derived from these representations, called embeddings, are often used to explore variation in these data. However, it is not clear how to assess the embedding uncertainty. We adapt methods developed for bootstrapping principal components analysis to the setting where features are algorithmically derived from nonmatrix data. We empirically compare the derived confidence areas in simulations, varying factors influencing feature learning and the bootstrap, like feature learning algorithm complexity and bootstrap sample size. We illustrate the proposed approaches on a spatial proteomics dataset, where we observe that embedding precision is not uniform across all tissue types. Code, data, and pretrained models are available as an R compendium in the supplementary materials. Supplementary files for this article are available online.

Supplementary Materials

Appendix: A PDF with additional supporting materials. Includes sections describing details of the spatial point process simulation setup and explaining how to access data and reproduce all analysis. Also provides supplementary figures referred to within the main manuscript. (supplement.pdf, PDF document)

Acknowledgments

The author thanks Susan Holmes, Karl Rohe, three reviewers, the associate editor, and the editor for feedback which improved the manuscript. Research was performed with assistance of the UW-Madison Center For High Throughput Computing (CHTC).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 180.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.