226
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances and optimization strategies for the microbial degradation of PCBs: From monocultures to microbial consortia

, , &
Pages 1023-1049 | Published online: 29 Nov 2023
 

Abstract

Polychlorinated biphenyls (PCBs) are a class of synthetic organic compounds that are widely distributed in the environment and have significant adverse effects on humans as well as the ecosystem. Many microorganisms that can degrade PCBs have been reported, including monocultures of bacteria and fungi, as well as natural and artificial microbial consortia. Generally, anaerobic dechlorination can degrade highly chlorinated PCBs to reduce their toxicity, while aerobic oxidation degrades lowly chlorinated PCBs (four or fewer chlorine atoms) and realizes their complete mineralization into CO2 by disrupting the benzene ring structure. Due to the need for the metabolism of a wide range of PCB congeners in the environment, microbial consortia have become a research hotspot, and their species diversity facilitates metabolic cooperation, enabling them to undertake more complex tasks. In this review, we will discuss the metabolic mechanisms of PCB degradation by monocultures as well as microbial consortia, and focus on the recent progress in the development and optimization of PCB-degrading microbial consortia, the community composition analysis methods, the prevailing optimization strategies such as biostimulation, bioaugmentation, metagenomics, and the combination of other methods for a better remediation effect, which will provide theoretical and practical bases for the rational design, construction and further optimization of efficient microbial consortia for the high-efficiency degradation of PCBs.

Graphical Abstract

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was supported by the National Key Research and Development Program of China (No. 2018YFA0902100), the National Natural Science Foundation of China (No. 22178262), and Tianjin Science and Technology Planning Project of China (No. 20YFZCSN00650).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 652.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.