14
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation on structural performance of hybrid composite post-tension plate girder through finite element analysis

Received 20 Oct 2023, Accepted 21 Mar 2024, Published online: 02 Apr 2024
 

ABSTRACT

Plate girders are typically formed by the built-up of I-shaped plates. It is vulnerable and weak in resisting buckling. In this study, FE analysis models were developed to evaluate the flexural performance of a hybrid composite post-tension (HCPt) plate girder. The HCPt plate girder is made of double-web and in-fill concrete with pre-stressed tendon to prevent shear web buckling and improve flexural resistance. The sensitivity of design parameters to the performance of the girder was also investigated through a parametric study using four different configurations. The selected parameters are span length, steel grade, concrete grade, and level of pre-stressed force. The statistical analysis was performed using linear multiple regression model to predict the girder’s flexural load and displacement. The results showed that web shear buckling was eliminated for models with in-fill concrete and pre-stressed tendon and failed by bending. Failure of the girder with double web was demonstrated by the combination of bending and web shear buckling. The concrete in-fill prevents the web plate from buckling and the beams generally fail in bending with high ductility. The load capacity of the hybrid composite plate girders with pre-stressing improved by 76% and 44% compared to conventional single-web plate girders and double-web plate girders, respectively.

Acknowledgments

The authors would like to thank the sponsor of this research which was funded using the Fundamental Research Grant Scheme (FRGS), Ministry of Higher Education Malaysia with Grant number: FRGS/1/2018/TK01/UPM/02/9.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Funding

The work was supported by the FRGS Ministry of Higher Education Malaysia [FRGS/1/2018/TK01/UPM/02/9].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 340.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.