176
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Regression learner machine learning approach to predict wind speed considering various parameters and integration of DG in mesh distribution system through GWO

, &
Pages 79-99 | Received 08 Jun 2023, Accepted 01 Jan 2024, Published online: 04 Feb 2024
 

ABSTRACT

The escalating global demand for electricity is driving a significant expansion in the size and complexity of electric power systems. Explosive growth strains power distribution, creating challenges for operators. Among these challenges, the imperative to minimise power losses is crucial. To enhance power efficiency and quality, Distributed Generation (DG) technology, particularly wind energy, is being integrated into distribution systems. However, the variable nature of wind speed poses a significant challenge to the seamless integration of wind energy into grids. To address this challenge, wind speed prediction methods are explored. In this work, a Machine Learning framework is employed for multivariate wind speed forecasting in Tamil Nadu, India 8.0883N,77.5385E. Key performance metrics, such as Root Mean Square Error (RMSE) and Mean Absolute Percentage Error values (MAPE), are used to assess the accuracy of the wind speed predictions. The predicted wind speed data is then utilised to estimate wind farm power output which is seamlessly integrated into the distribution system. Load Flow analysis is conducted using the robust and straightforward current injection method, focusing on IEEE-33 and IEEE-69 bus-balanced Mesh distribution systems. The aim is to determine the impact of wind-powered Distributed Generation on power losses within these systems.

Disclosure statement

The authors state that they have no prior financial conflicts that may seem to have influenced the work described in this study.

Data availability statement

All the data sources have been cited in this paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 330.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.