111
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Variational calculus in hybrid turbulence transport models with passive scalar

ORCID Icon & ORCID Icon
Pages 16-61 | Received 17 Aug 2023, Accepted 03 Jan 2024, Published online: 25 Jan 2024
 

Abstract

Non-zonal methods of hybrid Reynolds Averaged Navier–Stokes (RANS) equations-Large Eddy Simulation (LES) with subfilter transport equations enable to simulate turbulent flows out of spectral equilibrium on relatively coarse grid resolution. They can operate from RANS to LES depending on a control parameter linked to the grid step size. Variational analysis gives a useful framework to specify the functional dependence of this parameter to the grid size. This is the case for the partially integrated transport modelling method originally established in spectral space for homogeneous turbulence. The partitioning control function then monitors the ratio of the subfilter part to the total turbulent energy and the same process is developed in the present work for the thermal or transported scalar variance as well. So, we demonstrate here that this control function mechanism can be derived by variational calculus from a mathematical physics formalism developed both for first-order and second-order moment closures. We show that the result is entirely consistent with the spectral model derivation made in previous papers and that this approach can be transposed to almost any subfilter transport model developed in hybrid RANS-LES methodology in full generality. As a result, it will be evidenced also that resolved turbulent diffusion terms play a significant role in the acting mechanisms of turbulence and cannot be therefore neglected, even if these terms do not explicitly appear in LES subfilter closure because they are computed by the simulation itself and not modelled by the subfilter model. In addition, numerical simulations have been performed for illustrating the theoretical results of the variational analysis.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.