117
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring the acute muscle fatigue response in resistance trained individuals during eccentric quasi-isometric elbow flexions—a cross-sectional comparison of repetition and sex

, , &
Received 13 Jun 2023, Accepted 27 Sep 2023, Published online: 03 Nov 2023
 

ABSTRACT

Eccentric quasi-isometrics (EQIs) are a novel, low-velocity resistance exercise technique that incorporates a holding isometric contraction to positional fatigue, followed by voluntary resistance of the resulting eccentric muscle action. As females are typically more fatigue resistant than males during isometric and low-velocity dynamic muscle actions, this study explored sex-differences in the muscle fatigue response to an EQI protocol. Twenty-five (n = 12 female) participants completed 4 unilateral EQI elbow flexions. Absolute and relative surface electromyography (sEMG) amplitude (iEMG, LE peak), mean power frequency (MPF), angular impulse (aIMP), and elbow angle were compared across repetitions and between sexes using discrete values and statistical parametric/non-parametric mapping. There were significant and substantial sex and repetition differences in absolute iEMG, MPF, and aIMP, however, males and females had statistically similar absolute aIMP by repetition 4. When expressed relatively, there were no significant sex-differences. Additionally, there were significant between repetition changes in sEMG amplitude and elbow angle with an increasing number of repetitions, largely in the first-two thirds of repetition time. The current study suggests that there are absolute, but not relative sex-differences in EQI induced muscle fatigue, and the effects across repetitions occur predominately in the first two-thirds of repetition time.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed online at https://doi.org/10.1080/14763141.2023.2269543.

Additional information

Funding

The work was funded in part by the University of Manitoba Research Grants Program (URGP). Zachariah J. Henderson was supported by a Natural Sciences and Engineering Research Council of Canada Graduate Scholarship (CGS-D).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 212.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.