1,049
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Material Design and Characterization of Conducting Polymer-Based Supercapacitors

, , , , , & show all
Pages 192-250 | Received 02 Jan 2023, Accepted 21 May 2023, Published online: 06 Jun 2023
 

Abstract

The recent emerging technologies (e.g., hybrid vehicles and wearable electronic devices) laid down critical and stringent considerations for their power sources. In this regard, supercapacitors (SCs) have become an attractive energy storage solution, thanks to their superior power density and stability over batteries. The continuous development of SCs is an active field of research toward practical application and commercialization. Yet, finding electrode materials with high capacitance, excellent cycle-life, and mechanical stability is of major interest to exceed the current state-of-the-art SCs. The unique set of features of conducting polymers (CPs), including remarkable electrochemical properties, tunable synthesis, solution-processable capabilities, and mechanical flexibility, promotes them at the forefront of materials for SCs electrodes. This review provides a comprehensive summary of CP-based SCs technology. We first start with a brief overview of CPs’ unique properties and the principal synthetic methods that enable innovative fabrication. Then, a compact summary of the electrochemical and physicochemical characterization techniques is presented to assess the quality and mechanism of CP-based SCs. We limit our discussion to the published works in the last ten years. Finally, we highlight several research trends, key challenges, and opportunities of CP-based SCs for future research and development.

Acknowledgments

S.W. acknowledges a research grant program supported by Institut Teknologi Bandung (ITB) under contract number 0681/IT1.B05/KP/2021.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.