65
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Surfactant assisted dip-coating method for deposition of polyethylmethacrylate-diamond coatings

& ORCID Icon
Pages 226-235 | Received 18 Jan 2023, Accepted 22 Jun 2023, Published online: 03 Jul 2023
 

ABSTRACT

This investigation is motivated by increasing interest in polymer-diamond coatings for biomedical applications in implants and sensors. A conceptually new strategy is based on the feasibility of solubilisation of polyethyl methacrylate (PEMA) in isopropanol using 18β-glycyrrhetinic acid (GRA) and rhamnolipids (RLP) as solubilising agents. This approach offers benefits for biomedical applications by avoiding the use of traditional toxic solvents for PEMA dissolution. The ability to obtain concentrated solutions of high molecular mass polymer is a crucial factor for the development of a dip coating method. Potentiodynamic and impedance spectroscopy studies indicate that PEMA films provide corrosion protection of stainless steel in 3% NaCl solutions. The use of GRA facilitates the fabrication of films with improved protective properties. PEMA films are obtained as monolayers or multilayers of controlled film mass. Another important finding is a good dispersion of chemically inert microdiamond and nanodiamond particles using GRA and RLP. For the first time composite PEMA-diamond films are obtained using GRA and RLP as solubilising agents for PEMA and dispersing agents for diamonds in isopropanol solvent. The detailed analysis of film microstructures provides an insight into the influence of chemical structure of GRA and RLP on their interactions with PEMA and diamonds. Moreover, microstructure analysis indicates that such interactions are important for preventing defects in the composite films. The benefits of steroid-like dispersants are discussed. Composite films are obtained as monolayers with different diamond content or PEMA-diamond multilayers of different composition and film mass. The method represents a versatile strategy for the fabrication of alternating PEMA/PEMA-diamond multilayers. The benefits of the obtained microstructures for biomedical applications are discussed. The approach developed in this investigation opens an avenue for the fabrication of other polymer coatings containing various functional materials.

GRAPHICAL ABSTRACT

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council of Canada. Electron microscopy studies were performed at the Canadian Centre for Electron Microscopy.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was funded by the Natural Sciences and Engineering Research Council of Canada: [Grant Number RGPIN-2018-04014 and CRC Program].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.