117
Views
0
CrossRef citations to date
0
Altmetric
Articles

Thermo-environmental performance of polycarbonate materials as a glazing substitute in hot climates

, , &
Pages 1-33 | Received 06 Jun 2023, Accepted 29 Dec 2023, Published online: 29 Jan 2024
 

ABSTRACT

Buildings consume substantial energy, primarily for cooling and heating, resulting in equivalent CO2 emissions. Proper building envelope design in hot climates is crucial for reducing heat transmission, especially in transparent glazed-dominated envelopes with low thermal insulation compared to opaque walls. Compared to conventional glass, this study investigates the impact resistance, thermal performance, and environmental impact of polycarbonate (PC) sheets used as exterior glazing for windows and skylights. The study conducted literature reviews, Solar Heat Gain Coefficient (SHGC) measurements, and energy simulations of PC alternatives using a hotel in Madinah. Findings indicate that all PC alternatives' thermal and environmental performance performed better than ordinary glass, reducing total energy consumption and greenhouse gas (GHG) emissions. Single glazing decreased energy from 1% to 15%, double glazing from 1% to 19%, and triple glazing from 1% to 20% as window glazing. Skylight glazing also lowered overall energy use and gas emissions, with single glazing reducing 2% to 28%, double glazing 3% to 42%, and triple glazing 4% to 49%. Furthermore, the 25mm 9 wall X-Structure PC sheet performed best for windows and skylights in all glazing systems (single, double, and triple). The PC sheets' thickness and section composition affect thermal and environmental performance.

Acknowledgements

The author wishes to acknowledge the support provided by King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 228.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.