68
Views
4
CrossRef citations to date
0
Altmetric
Short Report

Is iron deficiency modulating physical activity in COPD?

, , , , , , , & show all
Pages 211-214 | Published online: 11 Jan 2019

Abstract

There is evidence that iron plays a key role in the adequate functioning of skeletal muscle. While it has been demonstrated that nonanemic iron deficiency (NAID) affects exercise tolerance and response to exercise training in patients with COPD, the impact on daily physical activities (DPAs) remains unknown. Eighteen COPD patients with NAID (ferritin <100 ng/mL or ferritin 100–299 ng/mL with a transferrin saturation <20%) and 18 COPD patients without this abnormality, matched for age, gender, and the degree of airflow limitation (control group), were enrolled to the study. The primary outcome was the level of DPA assessed by accelerometers. Patients were (mean [SD]) 66 (7) years and were mostly male (70%) and former smokers (52%). Their forced expiratory volume at 1 second was 41 (16)% predicted, carbon monoxide diffusing capacity was 47 (14)% predicted and oxygen arterial pressure reached 70 (11) mmHg. DPA and the number of steps per day were lower in NAID COPD patients compared with controls (physical activity level 1.39 vs 1.59, P<0.05; and 4,402 vs 6,975 steps/day, P<0.05, respectively). The percentage of patients with increased time spent sitting per day (>6 hours) was higher in patients with NAID compared with controls (73% vs 37%, P<0.05). In addition, the percentage of patients doing moderate to vigorous physical activity per day (>3 metabolic equivalents of task, at least 30 minutes) was lower in this group (66% vs 100%, P<0.05). The presence of iron deficiency was associated with reduced DPA in COPD patients. Further studies are needed to evaluate iron reposition and their impact on the level of physical activity in these patients.

Introduction

Nonanemic iron deficiency (NAID) in the adult population remains an important public health problem worldwide.Citation1 Moreover, NAID prevalence in chronic complex disease is very high, rising up to 40% in patients with COPDCitation2 and 50% in patients with chronic heart failure.Citation3 Particularly, COPD patients with NAID showed more dyspnea,Citation4 higher values of pulmonary arterial pressure at rest,Citation5 and lower exercise capacity with a reduced training-induced response than patients without iron deficiency.Citation2 These functional alterations cannot be fully explained by hemodynamic deterioration. An impairment in oxygen utilization by the peripheral muscles may also account for the reported loss of muscle function and/or exercise tolerance in COPD.Citation6 This factor can be especially relevant for those diseases in which the peripheral muscle involvement has an impact on daily physical activity (DPA).Citation7 In line with this, the effects of reduced physical activity and disuse in COPD have been extensively investigated in several studiesCitation8,Citation9 resulting in a vicious circle with reductions in DPA leading to deconditioning and a further deterioration of skeletal muscle function. Despite the clinical relevance and research problem, to the best of our knowledge, no studies have examined so far the impact of NAID on DPA in patients with COPD. In this context, we sought to compare the level of DPA in COPD patients with NAID and in those COPD patients with an adequate iron status.

To address this question, we conducted a pilot study, in which 18 patients with COPDCitation10 and NAID (hemoglobin >12 g/dL in females and >13 g/dL in males, ferritin <100 ng/mL or ferritin 100–299 ng/mL with a transferrin saturation <20%)Citation2 were recruited along with 18 COPD patients with normal iron content. The latter patients were age-matched and were controlled for disease severity (control group). DPA was measured using the SenseWear Pro Armband (BodyMedia, Pittsburgh, PA, USA), an accelerometer already validated in patients with COPD.Citation11 DPA was measured for 7 consecutive days. The minute-by-minute output of the number of steps and metabolic equivalents of task (METs) was exported for further analysis using a SenseWear Professional version. The variables chosen for this analysis were the following: 1) total daily number of steps; 2) moderate physical activity, defined as any activity ≥3 METs; 3) physical activity level (PAL);Citation12 and 4) time spent sitting per day.Citation13 Lung function (Easy One, Switzerland; Jaeger Master Screen Body; CareFusion; Germany) was measured according to European Respiratory Society/American Thorax Society standards.Citation14 The results were expressed as predicted normal values.Citation15 The study was approved by the local research ethics committee (CEIm– Parc de Salut MAR) and complies with the Declaration of Helsinki. Informed written consent was obtained from all patients before enrollment.

Results are presented as percentages or mean (SDs), unless otherwise stated. Parametric (Student’s t-test) and nonparametric tests (Wilcoxon test) were performed to assess the statistical significance of differences between groups. Pearson or Spearman correlation coefficient (r) was used to correlate DPA with hematologic variables (hemoglobin, transferrin saturation, and ferritin). A P-value ≤0.05 was considered significant. All analyses were performed using the IBM SPSS Statistics for Windows, Version 20.0 (IBM Corp., Armonk, NY, USA).

The characteristics of the study population are indicated in . As expected, the baseline clinical and functional variables of patients with COPD and NAID were not different from control COPD patients. Compared with control patients, NAID patients showed lower levels of the parameter steps per day and PAL. Also, the percentage of patients with adequate daily levels of moderate physical activity (>30 minutes) was significantly lower in NAID COPD patients than in the control COPD patients. Conversely, the percentage of patients with prolonged time spent sitting (≥6 hours/day) was significantly greater in NAID group (). No significant correlations were observed between hematologic variables and physical activity among all COPD patients.

Table 1 Clinical and functional characteristics of COPD patients with and without nonanemic iron deficiency (NAID)

To the best of our knowledge, the current study is the first to explore the impact of NAID on physical activity in patients with COPD. Previously, some of us published original research on the negative effects of NAID on exercise capacity and the response to pulmonary rehabilitation,Citation2 indicating a potential therapeutic target to improve exercise tolerance. However, it is widely known that the relationship between physical activity and exercise capacity in COPD is weakCitation16 because of their specific determinants.Citation9 Although the assessment of exercise capacity is a key point in the evaluation of pharmacological and nonpharmacological interventions, physical activity allows to monitor these effects on daily-life activities of these patients.Citation17 In this context, muscle dysfunction is one of the main mechanisms involved in the low physical activity with a prognosis implication in these patients.Citation8 It is clear that muscle dysfunction contributes to both exercise intolerance and low physical activity,Citation7 with pulmonary rehabilitation being the only treatment widely accepted. However, other specific interventions have already been implemented in clinical settings in the last years.Citation7Citation18 Recently, there has been great interest in the effect of iron deficiency on skeletal muscle as a potential contributor to muscle dysfunction in COPD and other chronic complex diseases.Citation19 Despite that our results do not fully support this hypothesis; we can speculate that iron deficiency in the skeletal muscle could be a likely cause of muscle dysfunction that generates low physical activity and exercise intolerance. Therefore, over the last year, we have carried out a randomized control trial to explore the effects of iron reposition in COPD patients (EudraCT 2016-001238-89). Participants are currently being recruited for the trial. As of June 1, 2018, a total of 30 patients with NAID and COPD have been recruited into the trial. Data collection is anticipated to be completed by the end of 2019.

Our current study has some limitations that should be considered when interpreting the results. First, the sample size was small and included only patients with moderate and severe COPD; these findings may not be applicable to the wider population of patients with COPD. In contrast, the adequate matched groups by airflow limitation, carbon monoxide diffusing capacity, or comorbidities may not occur in more conventional studies.

In conclusion, NAID in moderate to severe COPD patients could be a potential modulator of physical activity. Research is needed to examine the physiological mechanisms implicated and the potential role of therapeutic interventions.

Acknowledgments

The authors would like to thank Ana Balañá, Concepción Ballano, and Laura Gutiérrez for their assistance in collecting the data for this study. They want to acknowledge the support of the Instituto de Salud Carlos-III (FIS 14/00713 [FEDER], FIS 18/00075 [FEDER], FIS 17/00649 [FEDER], and BA 17/00025), CIBERES (ESF02/2017), Spanish Respiratory Society (SEPAR) 2016 and 2017 (409/2017), Catalan Foundation of Pulmonology (FUCAP) 2016 and 2017, Catalan Respiratory Society (SOCAP) 2017, Ministerio de Economía y Competitividad (SAF2014-54371 [FEDER]), Menarini (2015–2018), and Vifor Pharma (2017–2018).

The abstract of this paper was presented at the 2017 European Respiratory Society Congress as a poster presentation. The poster’s abstract was published in “Poster Abstracts” in European Respiratory Journal 2017:50: PA3457: DOI: 10.1183/1393003.congress-2017.PA3457.

Disclosure

The authors report no conflicts of interest in this work.

References

  • McLeanECogswellMEgliIWojdylaDde BenoistBWorldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005Public Health Nutr200912444445418498676
  • Barberan-GarciaARodríguezDABlancoINon-anaemic iron deficiency impairs response to pulmonary rehabilitation in COPDRespirology20152071089109526148453
  • KlipITComin-ColetJVoorsAAIron deficiency in chronic heart failure: an international pooled analysisAm Heart J2013165457558223537975
  • SilverbergDSMorRWeuMTSchwartzDSchwartzIFCherninGAnemia and iron deficiency in COPD patients: prevalence and the effects of correction of the anemia with erythropoiesis stimulating agents and intravenous ironBMC Pulm Med20141412424564844
  • PlesnerLLSchoosMMDalsgaardMIron deficiency in COPD associates with increased pulmonary artery pressure estimated by echocardiographyHeart Lung Circ201726110110427372430
  • RuiterGMandersEHappéCMIntravenous iron therapy in patients with idiopathic pulmonary arterial hypertension and iron deficiencyPulm Circ20155346647226401247
  • MaltaisFDecramerMCasaburiRAn official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary diseaseAm J Respir Crit Care Med20141899e15e6224787074
  • BarreiroESkeletal muscle dysfunction in COPD: novelties in the last decadeArch Bronconeumol2017532434427641307
  • Garcia-AymerichJFélezMAEscarrabillJPhysical activity and its determinants in severe chronic obstructive pulmonary diseaseMed Sci Sports Exerc200436101667167315595285
  • VogelmeierCFCrinerGJMartínezFJGlobal strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summaryArch Bronconeumol201753312814928274597
  • HaskellWLLeeIMPateRRPhysical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart AssociationMed Sci Sports Exerc20073981423143417762377
  • World Health OrganizationGlobal Recommendations on Physical Activity for HealthGeneva, SwitzerlandWHO2010260
  • PatelAVMaliniakMLRees-PuniaEMatthewsCEGapsturSMProlonged leisure time spent sitting in relation to cause-specific mortality in a large US cohortAm J Epidemiol2018187102151215829947736
  • PellegrinoRViegiGBrusascoVInterpretative strategies for lung function testsEur Respir J200526594896816264058
  • García-RíoFCalleMBurgosFSpanish society of pulmonology and thoracic surgery (SEPAR)Arch Bronconeumol201349938840123726118
  • WatzHPittaFRochesterCLAn official European Respiratory Society statement on physical activity in COPDEur Respir J20144461521153725359358
  • DemeyerHBurtinCHornikxMThe minimal important difference in physical activity in patients with COPDPLoS One2016114e015458727124297
  • JaitovichABarreiroESkeletal muscle dysfunction in chronic obstructive pulmonary disease. What we know and can do for our patientsAm J Respir Crit Care Med2018198217518629554438
  • StugiewiczMTkaczyszynMKaszturaMBanasiakWPonikowskiPJankowskaEAThe influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implicationsEur J Heart Fail201618776277326800032