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ABSTRACT
This study examined the associations of long-term exposure to ambient fine 
particulate matter (PM2.5) compositions/ozone with methylation of periph-
eral brain-derived neurotrophic factor (BDNF) promoters. A total of 101 
participants were recruited from a cohort in Shijiazhuang, Hebei province, 
China. They underwent baseline and follow-up surveys in 2011 and 2015. 
DNA methylation levels were detected by bisulfite-PCR amplification and 
pyrosequencing. Participants‘ three-year average levels of PM2.5 composi-
tions and ozone were estimated. Bayesian kernel machine regression 
(BKMR) models were used to examine the joint effects of pollutants on 
methylation levels. Exposure to PM2.5 compositions and ozone mixtures at 
the 75th percentile was associated with increased methylation levels at 
CpG2 of BDNF promoter (203%, 95% CI: 89, 316) than the lowest level of 
exposure, and sulfate dominated the effect in the BKMR models.Our find-
ings provide clues to the epigenetic mechanisms for the associations of 
PM2.5 compositions and ozone with BDNF.
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Introduction

Brain-derived neurotrophic factor (BDNF), as one neurotrophins, plays an essential role in synaptic 
plasticity, survival and maintenance of various types of neurons, and long-term hippocampal 
enhancement. A reduction of BDNF in the brain can impede synaptic plasticity, leading to an 
increased risk of cognitive decline, depression and Alzheimer’s disease (AD) (Franzmeier et al.  
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2021). DNA methylation is an important epigenetic mechanism regulating gene, and DNA methy-
lation of BDNF promoter decrease the mRNA or protein levels in the hippocampus or frontal 
cortex of the brain (Fransquet et al. 2020). Further, BDNF promoter methylation can serve as an 
epigenetic biomarker to predict diseases, such as depression, dementia and cognitive impairment 
(Fransquet et al. 2018; Poon et al. 2021). In fact, some studies have investigated the association 
between air pollution exposure and BDNF levels. It has been shown that increased level of exposure 
to air pollutants, such as particulate matter and ozone was associated with decreased BDNF 
expression and levels, and the main mechanisms underlying the associations were related to 
inflammation and oxidative stress (Zhou et al. 2020; Cassilhas et al. 2021). However, limited studies 
considered the epigenetic modifications for the associations.

Health effects of ambient particulate matter ≤2.5 μm in diameter (PM2.5) and ozone (O3) are 
currently of great global concern. As major compositions of PM2.5, sulfate (SO4

2-), nitrate (NO3
−), 

ammonium (NH4
+), organic matter (OM) and black carbon (BC) can all play important roles in the 

health effects of PM2.5 (Huang et al. 2019). Previous studies have indicated that PM2.5 and O3 co- 
exposure could increase risks of health outcomes (Siddika et al. 2019). Furthermore, PM2.5 and O3 
can mutually influence each other’s concentration in photochemical reactions. Studying their 
interaction effects can provide valuable information for devising effective strategies for the joint 
control of these two pollutants (Deng et al. 2022). Some studies have examined the individual health 
effect of O3 and PM2.5 compositions, but research on their interactive effects is limited (Lin et al.  
2019). Moreover, previous studies have reported that the secretion of BDNF was inhibited, upon 
exposure to PM2.5 compositions and O3 (Rose et al. 2020; Haghani et al. 2021; Song et al. 2022). 
However, few studies have focused on individual and joint effects of PM2.5 compositions and O3, 
and their interactive effects on DNA methylation of BDNF promoter (Zhou et al. 2020).

This study aims to examine the associations of long-term exposure to PM2.5 compositions and 
O3 with DNA methylation of BDNF promoter and their interactive effects among people in 
Shijiazhuang, Hebei Province, China. This study can contribute to the development of strategies 
aimed at preventing nervous system diseases by effectively managing exposure to PM2.5 composi-
tions and O3 during the initial stages of these conditions.

Material and methods

Study population

We randomly selected participants as a panel from the Mild cognitive impairment and Alzheimer’s 
disease Study in Hebei Province (MASHB), China. Details of the MASHB study are provided in the 
Section “Study population” of the supporting information. In brief, the MASHB study used a four- 
stage sampling process to select 3,240 participants aged ≥60 years from 36 communities of 4 cities in 
Hebei Province, China. Among the participants, 265 individuals were excluded, who declined 
participation, were unable to reached, or passed away. Additionally, 549 with nervous system 
diseases, poor hearing and vision, dementia, or psychiatric disorders were also excluded. Finally, 
the MASHB study included 2,426 participants (Xu et al. 2014). In order to facilitate sample 
collection and save sample collection cost, we randomly selected 101 participants from the 810 
participants in Shijiazhuang City, who were part of the MASHB study. The sample selection process 
and participants’ residential addresses are presented in Figure S1, S2 in the supporting information. 
All 101 participants completed a baseline survey via a face-to-face interview with well-trained 
investigators in 2011. We collected information including sex, age, educational attainment, occupa-
tion, smoking status, physical activity (the frequency, duration, and intensity of physical activity per 
week), and histories of diabetes, respiratory diseases, and cardiovascular diseases. In addition, whole 
blood samples were collected from all participants in both 2011 and 2015 and stored at −20°C for 
further analysis. All participants provided written informed consent. The protocol of this study was 
approved by the Ethics Committee of the First Hospital of Hebei Medical University (2011001).
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Exposure measurements

The data on participants’ exposures to PM2.5 compositions during the three years before 2011 or 
2015 were obtained from Tracking Air Pollution (TAP, http://tapdata.org.cn) in China. Details 
about TAP have been reported (Geng et al. 2017). In brief, TAP project has developed a machine 
learning model to predict daily PM2.5 concentrations at a spatial resolution of 10 km across China. 
The data sources include ground PM2.5 measurements, satellite-derived aerosol optical depth 
(AOD) retrievals, meteorological reanalysis data, land use information, etc. Then, the TAP project 
developed PM2.5 composition data set based on the above 10-km PM2.5 grided dataset. Original 
conversion factors between PM2.5 concentration and PM2.5 compositions were simulated using an 
atmospheric chemical transport model. Combined with ground measurement data from the air 
monitoring stations, revised conversion factors between PM2.5 concentration with PM2.5 composi-
tions were obtained based on a machine learning algorithm, and then near real-time concentration 
data on major chemical compositions [sulfate (SO4

2-), nitrate (NO3
−), ammonium (NH4

+), organic 
matter (OM) and black carbon (BC)] was obtained. The chemical compositions estimated by TAP 
had good consistency with ground measurements, with correlation coefficient in the range of 0.65 to 
0.75 for five compositions. Finally, we used participants’ geolocation information of residential 
addresses (longitude and latitude coordinates) to estimate daily levels of PM2.5 and five composi-
tions based on above approaches. We aggregated these estimates into three-year average levels of 
exposure to PM2.5 compositions and used them in the final analyses (Chen et al. 2019).

The three-year average concentrations of ozone (O3) prior to date of whole blood collection were 
estimated using a satellite-based random forests model (Chen et al. 2021). In brief, the random 
forest model was developed by linking ground-monitored O3 from the air monitoring stations with 
the data of satellite-observed O3 column amount, meteorological variables, land use, vegetation, etc. 
The model was used to estimate surface O3 across China at a spatial resolution of 0.0625°. Further, 
we tested the predictive ability of the model using 10-fold cross-validation (CV). The results 
reported that the CV R2 value for estimated O3 was 84%, indicating good predictive ability. 
Finally, we used participants’ geolocation information of residential addresses (longitude and 
latitude coordinates) to estimate daily max 8-h average O3 levels using above models, and we 
aggregated these estimates into three-year averages (Chen et al. 2019).

BDNF promoter methylation detection

Details of the BDNF promoter methylation detection are provided in Section “BDNF promoter 
methylation detection” of the supporting information. In brief, we firstly extracted genomic DNA 
from whole-blood samples using a genomic DNA extraction kit. Then, we chose seven BDNF 
promoter CpG sites (CpG1 to 3 of promoter I and CpG4 to 7 sites of promoter IV) according to 
previous studies (Figure S3) (Ikegame et al. 2013). Finally, we conducted Bisulfite-PCR amplifica-
tion and pyrosequencing to detect DNA methylation of above CpG sites using MethPrimer software 
and PSQ 96 MA instrument. The amplification primers are present in Table S1.

Statistical analyses

Single pollutant analyses
Linear mixed-effect models were used to examine the association of each air pollutant with BDNF 
methylation. We included participants’ ID number in the models as a random-effect variables. We 
adjusted a range of covariates including sex, age, educational attainment, occupation, smoking, 
physical activity [metabolic equivalent (MET)-min/week], respiratory disease, cardiovascular dis-
ease, and diabetes (Alemany et al. 2021). Given the skewed distribution of CpG methylation levels, 
the methylation levels were log-transformed. In addition, to examine the potential nonlinear 
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associations, a natural cubic spline with 3 degrees of freedom (df) was used for each PM2.5 
composition and O3 (Li et al. 2016).

Using linear mixed-effect models, we calculated the percent methylation changes and 95% 
confidence intervals (CI) associated with an interquartile range (IQR) increase in each 
composition/O3. We used the formula [100 × (expβ −1)] (where β represents coefficient from the 
models) to calculate percent changes (Li et al. 2019). Based on nonlinear mixed-effect models, we 
plotted the exposure-response curves for associations of PM2.5 compositions/O3 levels with methy-
lation levels. We set the lowest points of above curves as references (zero percent change) when 
testing for increased methylation levels associated with PM2.5 compositions and O3, and vice versa 
(Li et al. 2016).

Joint effect analyses
Bayesian kernel machine regression (BKMR) models were used to examine associations of the 
mixtures of all measured chemical compositions and O3 with BDNF promoter methylation levels 
(Wang et al. 2020), which considers potential nonlinearities among the correlated pollutants. 
Details of the BKMR models have been previously reported as follows (Bobb et al. 2018): 

where Y is the methylation level; Z is a vector of PM2.5 compositions and O3 assessed in this study; 
X is a range of the same covariates as those of the single pollutant analyses. The function h () is the 
Gaussian kernel function. Due to the high correlation between PM2.5 compositions (Figure S4), we 
used a hierarchical variable selection to fit the models, and scaled the exposure variables to facilitate 
efficient Markov Chain Monte Carlo (MCMC) sampling. We ran BKMR models with 10,000 
iterations for methylation level at each CpG site (Peralta et al. 2021).

Based on BKMR models, we calculated the group posterior inclusion probability (groupPIP) and 
the conditional posterior inclusion probability (condPIP) for each pollutant through hierarchical 
variable selection. Then, we examined overall effects of air pollutant mixtures on methylation levels 
when the mixtures were fixed at specific percentiles (0th to 75th percentile, with 5% increments) 
compared to their lowest levels. Further, to examine the individual effect of each pollutant among 
mixtures, we compared the effect of each pollutant from 25th percentile to 75th percentile on BDNF 
methylation levels, when the other pollutants were fixed at 25th, 50th, and 75th percentiles.

Interaction and stratified analyses
To investigate the interactive effects of PM2.5 compositions and O3, associations between PM2.5 
compositions and BDNF promoter methylation at different O3 exposure levels (O3 ≤75th percen-
tile, O3 >75th percentile) were examined (Lin et al. 2019). Considering the possible modifications by 
demographic factors, we conducted analyses stratified by sex (male, female) and age (<75 years, ≥ 
75 years).

Sensitivity analyses
To evaluate the robustness of the main results, we conducted several sensitivity analyses: (1) Since 
some covariates, such as occupation, smoking, and cardiovascular disease, were potential risk 
factors for BDNF expression (Pius-Sadowska and Machaliński 2017; Pivac et al. 2022), we devel-
oped models adjusted these covariables (model1) and models without these covariables adjusted 
(model2). (2) Considering the associations of respiratory diseases/diabetes with serum BDNF levels 
or BDNF DNA methylation (Liu et al. 2016; Karim et al. 2021), we excluded participants with 
respiratory diseases (n = 13, 12.9%) or diabetes (n = 12, 11.9%) in the analyses.

The statistical significance was set at a two tailed P < 0.05, except for interaction terms (two tailed 
P < 0.1). Statistical analyses were performed by R (version 4.1.2).
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Results

Population characteristics

The baseline characteristics of 101 participants are summarized in Table 1. About 63.4% 
participants were female and all participants’ mean age was 69.2 ± 5.4 years. The majority of 
them never smoked (75.2%). In terms of disease histories, most participants had cardiovas-
cular disease (71.3%), and a minority of them had respiratory disease (12.9%) and dia-
betes (11.9%).

Exposure and outcome assessment

Participants’ median levels of exposure to SO4
2-, NO3

−, NH4
+, OM, BC and O3 during the three 

years before the baseline survey (in 2011) were 15.59 μg/m3, 15.05 μg/m3, 10.23 μg/m3, 24.29 μg/m3, 
4.92 μg/m3 and 97.20 μg/m3, respectively, and the levels of five compositions and O3 were signifi-
cantly higher in the follow-up period (Table 2). Additionally, there were significant differences in 
the DNA methylation levels at CpG2, CpG4, and CpG5 between the baseline and follow-up periods, 
which may be due to air pollution as well as other underlying factors.

Single pollutant analyses

Exposure to high levels of PM2.5 compositions were significantly associated with increased CpG2 
methylation levels, and decreased CpG4 methylation levels (Table 3, Table S2). For instance, each 
interquartile range (IQR) increases of SO4

2- and NO3
− were associated with increases of 63% (95%CI: 

31, 95) and 48% (95%CI: 5, 90) in CpG2 methylation levels, respectively. While, each IQR increases 
of SO4

2-, NO3
−, NH4

+ and OM were associated with decreases of −125% (95%CI: −194, −55), −181% 
(95%CI: −270, −93), −153% (95%CI: −232, −74) and −103% (95%CI: −171, −36) in CpG4 methyla-
tion levels, respectively. O3 was not significantly associated with the methylation levels of any CpG 
sites. The non-linear exposure-response curves for associations of PM2.5 compositions/O3 with 
methylation levels were positive for CpG2, while negative for CpG4 and CpG5, and these showed 
consistent increases/decreases with no clear thresholds for the significant associations. The slopes of 
the curves seemed to flatten when the pollutant levels were above the 75th percentiles (Figure S5).

Joint effect analyses

The groupPIPs and conPIPs are presented in Table S3. A threshold of 0.5 PIP value is used to 
determine the importance of a pollutant (Yu et al. 2021). The groupPIP and conPIP of SO4

2- 

(groupPIP: 0.995; conPIP: 0.977) were both higher than 0.5 for CpG2 methylation levels. However, 
both groupPIPs and conPIPs of PM2.5 compositions above 0.5 were not observed for CpG4 and 
CpG5 methylation levels.

The joint effects of five PM2.5 compositions and O3 on CpG2, CpG4 and CpG5 methylation 
levels are shown in Figure 1a. For instance, exposure to a high level of air pollutant mixtures (75th 
percentile) was associated with increased methylation levels at CpG2 [202.50% (95% CI: 89.14, 
315.87)] and decreased methylation levels at CpG4 [−281.87% (95% CI −499.87, −63.88)] compared 
to their lowest levels (Table S4).

Individual effect of each pollutant among mixtures are shown in Figure 1b. Fixing all 
other individual air pollutants at their 25th, 50th, and 75th percentiles in the BKMR 
models, SO4

2- was positively associated with methylation levels of CpG2. Further, the results 
indicated that the associations of each pollutant among mixtures with methylation levels 
were consistent with those when all other individual pollutants were fixed at different 
percentiles.
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Interactive effects between PM2.5 compositions and O3

The associations between PM2.5 compositions and BDNF promoter methylation (CpG2) were 
stronger at high O3 exposure levels (O3 >75th percentile) (Figure 2). For example, each IQR 

Table 1. Baseline characteristics of 101 participants in this study.

Characteristic
Female 
(n = 64)

Male 
(n = 37)

Total 
(n = 101) Pb

Age (years); mean (SD) 67.4 (4.8) 72.3 (4.8) 69.2 (5.4) <0.0001
Education; n (%) 0.6133
Illiterate 3 (4.7) 1 (2.7) 4 (4.0)
Primary school 17 (26.6) 11 (29.7) 28 (27.7)
Junior high school 31 (48.4) 13 (35.1) 44 (43.6)
High school/Junior college 8 (12.5) 8 (21.6) 16 (15.8)
College and above 5 (7.8) 4 (10.8) 9 (8.9)
Smoking status; n (%) <0.0001
Never 60 (93.8) 16 (43.2) 76 (75.2)
Former 0 (0.0) 14 (37.8) 14 (13.9)
Current 4 (6.2) 7 (18.9) 11 (10.9)
Occupation before retirement; n (%) 0.1047
Production worker 25 (39.1) 13 (35.1) 38 (37.6)
Government worker 9 (14.1) 9 (24.3) 18 (17.8)
Technician 14 (21.9) 12 (32.4) 26 (25.7)
Others 16 (25.0) 3 (8.1) 19 (18.8)
Physical activityb (MET-min/week); median (IQR) 2205 (0.0) 2205 (1470.0) 2205 (1170.0) 0.0150
Cardiovascular disease; n (%) 0.8231
No 19 (29.7) 10 (27.0) 29 (28.7)
Yes 45 (70.3) 27 (73.0) 72 (71.3)
Diabetes; n (%) 0.1172
No 59 (92.2) 30 (81.1) 89 (88.1)
Yes 5 (7.8) 7 (18.9) 12 (11.9)
Respiratory disease; n (%) 0.5407
No 57 (89.1) 31 (83.8) 88 (87.1)
Yes 7 (10.9) 6 (16.2) 13 (12.9)

aPhysical activity is represented by metabolic equivalent (MET) -min/week. 
bP for t test or chi-square test, referring to the significance of the difference between females and males.

Table 2. Summary statistics of PM2.5 compositions, O3 and BDNF promoter methylation levels in this panel study.

　 　 Baseline (in 2011) Follow-up (in 2015)

P c　 　 Mean (SD)a Median (IQR)b Mean (SD) a Median (IQR) b

Air pollutants (μg/m3) PM2.5 96.44 (2.70) 96.38 (1.33) 100.36 (2.72) 99.93 (0.19) <0.0001
SO4

2- 15.63 (0.41) 15.59 (0.03) 15.88 (0.42) 15.78 (0.06) <0.0001
NO3

− 15.28 (0.64) 15.05 (0.06) 16.97 (0.61) 16.74 (0.15) <0.0001
NH4

+ 10.35 (0.37) 10.23 (0.03) 11.05 (0.33) 10.94 (0.05) <0.0001
OM 24.57 (0.99) 24.29 (0.13) 26.16 (1.05) 25.84 (0.13) <0.0001
BC 4.92 (0.14) 4.92 (0.11) 4.92 (0.14) 4.91 (0.04) 0.0021
O3 97.75 (1.11) 97.20 (0.67) 98.07 (1.49) 97.43 (0.40) <0.0001

BDNF promoter methylation lnCpG1d −3.21 (4.13) −6.91 (7.65) −4.42 (4.06) −6.91 (7.67) 0.1000
lnCpG2 1.31 (2.39) 1.64 (0.98) 2.01 (1.03) 1.95 (0.61) 0.0001
lnCpG3 −2.63 (4.09) −0.19 (8.04) −4.24 (4.14) −6.91 (8.27) 0.0572
lnCpG4 −0.35 (3.32) 1.03 (0.87) −2.68 (4.09) 0.11 (8.08) <0.0001
lnCpG5 −0.27 (3.38) 1.08 (1.03) −0.98 (3.56) 0.57 (8.22) 0.0046
lnCpG6 0.88 (2.78) 1.63 (0.67) 0.79 (2.74) 1.49 (0.70) 0.1747

　 lnCpG7 −3.40 (4.04) −6.91 (7.83) −3.20 (4.03) −6.91 (8.03) 0.7598
aMean (SD) represents the mean levels and standard deviations of levels of exposure to air pollutants during the three years 

before 2011 (or 2015), or those of participants’ methylation levels in 2011 (or 2015). 
bMedian (IQR) represents the median levels and interquartile ranges of levels of exposure to air pollutants during the three years 

before 2011 (or 2015), or those of participants’ methylation levels in 2011 (or 2015). 
cP for rank-sum test, referring to the significance of the difference in air pollutant exposure or methylation levels during the two 

time periods. 
dlnCpG represents the logarithmically transformed methylation levels of the corresponding sites.
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increase of SO4
2- was associated with a 30% (95%CI: 0, 59) increase of CpG2 methylation levels at 

high O3 exposure levels, and that was 2% (95%CI: −13, 52) at low O3 exposure levels (P-interaction  
= 0.088). Similar results were found for OM.

Stratified and sensitivity analyses

No significant modification effects were observed when the data were stratified by sex and age 
(Table S5, S6). For instance, each IQR increase of SO4

2- was related to a 54% (95%CI: 20, 88) 
increase of CpG2 methylation levels in females, and that was 86% (95%CI: 2, 171) in males 
(P-interaction = 0.5690). Consistency was observed between different models in the sensitivity 
analyses. For instance, a 63% (95%CI: 31, 95) change in CpG2 methylation level was associated 
with an IQR increase of SO4

2- in the model1, and that was 65% (95%CI: 32, 97) in the model2 (Table 
S8). Moreover, the most results did not substantial changed after excluding participants with 
respiratory diseases and diabetes (Table S7).

Discussion

This study examined the individual and joint effects of PM2.5 compositions and O3 on DNA 
methylation of BDNF promoter. High levels of SO4

2- and NO3
− were associated with increased 

Table 3. The percent changes of BDNF promoter methylation levels asso-
ciated with each interquartile range increase of PM2.5 compositions and O3..

Air pollutants (per IQR increase; μg/m3) % Change (95%CI)

PM2.5

CpG2 35 (6, 64)
CpG4 -92 (−153, −31)
CpG5 −52 (−107, 3)

SO4
2-

CpG2 63 (31, 95)
CpG4 -125 (−194, −55)
CpG5 −5 (−67, 58)

NO3
−

CpG2 48 (5, 90)
CpG4 -181 (−270, −93)
CpG5 -99 (−178, −19)

NH4
+

CpG2 37 (−1, 75)
CpG4 -153 (−232, −74)
CpG5 -90 (−161, −19)

OM
CpG2 29 (−3, 61)
CpG4 -103 (−171, −36)
CpG5 -62 (−123, −2)

BC
CpG2 4 (−8, 16)
CpG4 −4 (−29, 21)
CpG5 −7 (−30, 15)

O3

CpG2 −2 (−29, 24)
CpG4 −17 (−73, 40)
CpG5 −47 (−96, 2)

Bold indicates that the estimates are statistically significant. Models were 
adjusted for sex, age, education, physical, occupation, smoking, cardio-
vascular disease, respiratory diseases, and diabetes. 

Abbreviations: SO4
2-, sulfate; NO3

−, nitrate; NH4
+, ammonium; OM, organic 

matter; BC, black carbon; PM2.5, particulate matter ≤2.5 μm in diameter; 
O3, ozone; CI, confidence interval; BDNF, Brain-derived neurotrophic 
factor.
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methylation level of CpG2 in promotor I and decreased methylation level of CpG4 in promotor IV. 
We also observed a positive correlation between air pollutant mixtures and CpG2 methylation 
levels, with SO4

2- dominating the effects of the mixtures. In addition, we observed synergistic effects 
of exposure to PM2.5 compositions and O3 on the BDNF promoter methylation, particularly at 
CpG2.

Evidence for the associations of PM2.5 compositions with BDNF promoter methylation is 
limited. However, some studies have indicated that exposure to particulate matter, including 
SO4

2-, NO3
−, NH4

+, OM or BC, could reduce the secretion of BDNF. For example, two animal 
experiments from China and USA reported that PM, containing more than 60% SO4

2-, NO3
−, NH4

+ 

, BC, induced a general down-regulation of BDNF in mice (Liu et al. 2018; Haghani et al. 2021). 
Moreover, a panel study among 34 retirees in China reported that PM2.5 (including SO4

2- and NO3
− 

) exposure reduced BDNF levels (Song et al. 2022). Further, many studies have shown that 
decreased BDNF expression in the brain regions have been linked to methylation of the BDNF 
gene (Polli et al. 2020). Therefore, the positive associations of the SO4

2- and NO3
− with methylation 

at CpG2 in this study could be supported by the previous studies. However, to our knowledge, no 
previous studies reported negative associations between PM2.5 compositions and methylation of 
BDNF promoters or BDNF secretion. Discrepancies in the ranges of PM2.5 concentrations and 

Figure 1. The joint and individual effects of PM2.5 compositions and O3 on BDNF promoter methylation using BKMR models. (a) 
The joint effects (percent change, 95% CI) of air pollution mixtures on BDNF promoter methylation using the BKMR model. This 
plot shows the percent change in each CpG methylation level when all pollutants are fixed at a certain percentile compared to 
their lowest level. (b) Individual pollutant effects (percent change, 95% CI) on BDNF promoter methylation when other pollutants 
are fixed at a specific quantile (25th, 50th, 75th). Models were adjusted for sex, age, education, physical, occupation, smoking, 
cardiovascular disease, respiratory diseases, and diabetes. Abbreviations: SO42-, sulfate; NO3-, nitrate; NH4+, ammonium; OM, 
organic matter; BC, black carbon; PM2.5, particulate matter ≤2.5 μm in diameter; O3, ozone; CI, confidence interval; BDNF, Brain- 
derived neurotrophic factor.
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sample sizes may contribute to the negative associations of SO4
2-, NO3

−, NH4
+ and OM with 

methylation levels at CpG4 and CpG5 in our study.
No significant associations between O3 and BDNF promoter methylation were observed in our 

study. However, an animal experiment from Canada reported that exposure to O3 (0.8 ppm for 4 h) 
reduced BDNF expression in the hippocampus of rats (Rose et al. 2020), while another experiment 
from Italy found that exposure to O3 (0.3 or 0.6 ppm from 30 days before breeding pairs until 17th 
gestational day) increased BDNF levels in the striatum of mice (Santucci et al. 2006). In brief, it is 
suggested that high levels of exposure to O3 inhibited BDNF expression, while low levels of 
exposure to O3 promoted BDNF expression. Compared to the above studies, the nonsignificant 
O3-methylation associations in this study could be due to discrepancies in ranges of O3 concentra-
tion and study designs.

To our knowledge, no evidence for joint effects of PM2.5 compositions and O3 on BDNF 
promoter methylation has been reported. The joint effect analyses in this study indicated that 
joint exposures to five compositions (SO4

2-, NO3
−, NH4

+, OM and BC) and O3 had positive 
associations with BDNF promoter methylation, especially at CpG2 site, and SO4

2- played an 
essential role in the association. Further, this study observed that PM2.5 compositions (e.g. SO4

2- 

and OM) and O3 had synergistic effects on BDNF promoter methylation, and the underlying 
mechanism was unclear. According to previous studies, it may be that O3 exposure can increase the 
permeability of the lung epithelium barrier, facilitating the direct absorption of particles into the 
circulatory system (Siddika et al. 2019).

Figure 2. The percent changes of BDNF promoter methylation levels (CpG2) associated with each interquartile range increase of 
PM2.5 compositions (μg/m3) in different O3 exposure levels. * P-interaction <0.1. ** P-interaction <0.05. Models were adjusted for 
sex, age, education, physical, occupation, smoking, cardiovascular disease, respiratory diseases, and diabetes. Abbreviations: 
SO42-, sulfate; NO3-, nitrate; NH4+, ammonium; OM, organic matter; BC, black carbon; PM2.5, particulate matter ≤2.5 μm in 
diameter; O3, ozone; CI, confidence interval; BDNF, Brain-derived neurotrophic factor.
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Although the mechanisms for associations of BNDF methylation with exposure to PM2.5 
compositions were unclear, there could be several possible mechanisms. For instance, upon 
exposure to SO4

2- in PM2.5, hypermethylation on the BNDF promoter could be induced by the 
activation of DNA methyltransferases (Zhou et al. 2020). Besides, upon exposure to the composi-
tion, S-adenosyl methionine can be activated and supply methyl groups to CpG of the promoter 
(Rider and Carlsten 2019). The silencing effect of hypermethylation on the BNDF promoter results 
in decreased BDNF levels (Polli et al. 2020). A reduction of BDNF in the brain can hinder synaptic 
plasticity and result in nervous system diseases, such as AD (Ng et al. 2019).

One implication of this study was that the results of our study provided clues to the epigenetic 
mechanisms underlying associations of PM2.5 with nervous system diseases. Previous studies have 
shown that DNA methylation of BDNF promoter can serve as an epigenetic biomarker to predict 
the onset of nervous system diseases (Fransquet et al. 2018). Thus, these findings can contribute to 
the establishment of strategies to prevent nervous system diseases by reducing the levels of exposure 
to PM2.5 compositions, especially for SO4

2-. For instance, previous studies have reported that the 
major sources of SO4

2- in PM2.5 are and industrial emissions and vehicle emissions, and effective 
measures (e.g. installation of flue-gas desulfurization and selective catalytic reduction equipment, 
and control of vehicle population) should be taken to control these emissions (Geng et al. 2017). In 
addition, this study observed that the co-exposure to PM2.5 and O3 could enhance the adverse 
health effects, and it may help make policies to simultaneously control both particulate matter and 
O3.

There are several strengths in this study. We have examined associations of long-term 
exposure to PM2.5 compositions/O3 with BDNF promoter methylation and their interactive 
effects, which have been seldom reported by prior studies. Moreover, as a panel study, this 
research considered variations both between individuals and within individuals. In addition, we 
used NanoDrop for quality control of DNA samples above 5 μg without degradation, and high- 
accuracy pyrosequencing for reliable analysis. It should be noted that there are also several 
limitations for this study. First, due to limited funding, we did not detect serum BDNF level or 
examine the mediation effect of methylation between air pollutants and BDNF. Further work 
should examine both BDNF and methylation levels to investigate the impact of air pollutants on 
BDNF, which may be mediated by methylation. Second, this study was conducted in 
Shijiazhuang City, which may not provide a comprehensive representation of China. Future 
research should encompass other regions and aggregate the findings for greater representative-
ness. Third, some covariates were not considered, such as body mass index, which are poten-
tially associated with both air pollution and BDNF and may have impacts on the air pollution- 
methylation associations. Therefore, future studies should consider additional covariates to 
enhance the accuracy of examining these associations.

Conclusions

Overall, our findings suggested both individual and joint associations between long-term exposure 
to PM2.5 compositions (especially SO4

2-) and BDNF promoter methylation levels. Our study 
contributes valuable evidence to the interactive effects of PM2.5 and O3 on BDNF promoter 
methylation, which is relevant to nervous system diseases. These findings can inform the develop-
ment of prevention strategies that involve the joint control of PM2.5 and O3. Moreover, further 
research is warranted to explore the associations of other compositions, such as perfluorochemicals 
and heavy metals, with BDNF promoter methylation across various populations and regions.
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