

PHARMACEUTICAL **Pharmaceutical Biology** BIOLOGY

ISSN: 1388-0209 (Print) 1744-5116 (Online) Journal homepage: www.informahealthcare.com/journals/ iphb20

Muscarinic Receptor Activity of Some Malaysian **Plant Species**

L.Y. Chung, K.F. Yap, M.R. Mustafa, S.H. Goh & Z. Imiyabir

To cite this article: L.Y. Chung, K.F. Yap, M.R. Mustafa, S.H. Goh & Z. Imiyabir (2005) Muscarinic Receptor Activity of Some Malaysian Plant Species, Pharmaceutical Biology, 43:8, 672-682, DOI: 10.1080/13880200500383439

To link to this article: https://doi.org/10.1080/13880200500383439

Published online: 07 Oct 2008.

🕼 Submit your article to this journal 🗗

Article views: 705

View related articles

Muscarinic Receptor Activity of Some Malaysian Plant Species

L.Y. Chung¹, K.F. Yap¹, M.R. Mustafa², S.H. Goh³, and Z. Imiyabir⁴

¹Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; ²Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; ³Forest Research Institute Malaysia, Kuala Lumpur, Malaysia; ⁴Forest Research Center, Sepilok, Sandakan, Sabah, Malaysia

Abstract

Muscarinic receptor binding activity was tested on 224 plant extracts obtained from more than 50 plant families found in Malaysia. The plant extracts were evaluated by a 96-well microplate filtration-based radioligand competitive assay, centered on the ability of the plant extracts to competitively displace the radioligand, [³H]*N*-methylscopolamine, from binding to the muscarinic membrane receptors. The screening assay was initially carried out at 50 µg/assay point, and those showing inhibition at and above 61% were retested at 10µg/assay point. The extracts of *Ficus septica* Burm. f. (Moraceae) [65.85 \pm 3.75% inhibition; mean $(n = 3) \pm SD$], Polyalthia microtus Miq. (Annonaceae) $(32.63 \pm 1.38\%$ inhibition), and *Popowia odoardoi* Diels (Annonaceae) $(35.79 \pm 7.11\%)$ inhibition) at 10µg/assay point exhibited muscarinic properties, which are worthy of further investigation.

Keywords: Ficus septica, Malaysian plants, muscarinic receptor, Polyalthia microtus, Popowia odoardoi, radio-ligand binding assay.

Introduction

Since ancient times, human being have used natural products, including plants, as remedies to treat illnesses. Today, about one-third of the top 25 prescription drugs in the world are natural products or their derivatives (Manly et al., 2002). The sources of natural products include plants, marine and microorganisms (Zhu, 1996; Cragg et al., 1997; Shu, 1997; Manly et al., 2002), and historically, plants have been an important source of pharmacologically active compounds providing for a number of muscarinic receptor antagonists. For example, atropine from the plant *Atropa belladonna* L. and scopolamine from *Datura* sp. are the most commonly used anticholinergic drugs (Evans & Evans, 2002).

Anticholinergic drugs act on two distinct classes of receptors, muscarinic and nicotinic. The muscarinic class of acetylcholine receptors are widely distributed throughout the body and subserve numerous vital functions in both the brain and autonomic nervous system (Lefkowitz et al., 1990). Heterogeneity of muscarinic receptor was shown in the late 1980s when five subtypes (M1–M5) were identified using molecular biological techniques (Kubo et al., 1986; Bonner et al., 1987; Liao et al., 1989; Sokolovsky, 1989; Kashihara et al., 1992).

Activation of muscarinic receptors in the periphery causes a decrease in heart rate, relaxation of blood vessels, constriction in the airways of the lung, an increase in secretions, and motility of various organs of the gastrointestinal tract, increase in the secretions of lacrimal and sweat glands, constriction in the iris sphincter and ciliary muscles of the eye (Lefkowitz et al., 1990). In the brain, muscarinic receptors influence many important functions such as learning, memory, and the control of posture (Lefkowitz et al., 1990).

Classic muscarinic receptor antagonists such as atropine do not distinguish between muscarinic receptor subtypes. These nonselective compounds cover therapeutic indications such as antispasmodic, antitussive, and antibronchospastic, but their therapeutic utility is limited by the presence of side effects including mydriasis, CNS disturbances, tachycardia, and constipation. In recent studies, it has been shown that selective M1 antagonists are useful in reducing gastric acid secretion. Selective M2 antagonists may be useful in the treatment of

Accepted: September 12, 2005

Address correspondence to: L.Y. Chung, Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia. E-mail: chungly@hotmail.com

Muscarinic receptor binding of Malaysian plants

No.	Voucher no.	Family	Species	Part ^a	Inhibition ^{<i>l</i>}
1	43264	Alangiaceae	Alangium ebenaceum	L	+
2	143521		Alangium griffithii	В	+
3	143521			L	±
4	43303	Anacardiaceae	Bouea macrophylla	L	±
5	43304		Bouea oppositifolia	L	3+
6	143516		Buchanania insignis	В	±
7	143516		U	L	±
8	143370		Semicarpus leneatus	L	+
9	143374	Annonaceae	Artabotrys roseus	В	±
10	143374			L	 ±
11	143523			B	2+
12	143523			L	±
13	143377		Desmos chinensis	B	±
13	143377		Desmos chinensis	L	±
15	143358		Eniscosanthum grandiflorum	L	+
16	143362		Goniothalamus woodii	B	
			Gonioinalamus wooali		±
17	143362			L	±
18	133834		Goniothalamus gigantifolius	L	±
19	145372			L	+
20	145372		· · · · · · · · · · · · · · · · · · ·	S	+
21	143506		Neouvaria acuminatiisima	В	3+
22	143506			L	+
23	143509		Orophea corymbosa	В	±
24	143509			L	±
25	143511		Polyalthia insignis	В	3+
26	143511			L	±
27	143502		Polyalthia longipes	В	3+
28	143502			L	+
29	145376		Polyalthia microtus	В	4 +
30	145376			L	+
31	143524		Polyalthia rumphii	L	3+
32	143524			R	±
33	143395		Popowia odoardoi	В	4+
34	145365			S	3+
35	143368		Uvaria rufa	B	±
36	143368		e varia ruja	L L	±
37	143507		Xylopia malayana		
38			Αγιορία παιάγαπα	B	+
	143507	A		L	+
39	43125	Apocynaceae	Dyera costulata	L	± .
40	145362		Kopsia dasyrachis	L	+
41	145362	D		S	2+
42	145361	Burseraceae	Canarium denticulatum	В	2+
43	145361			L	+
44	143522		Canarium hirsutum	В	+
45	143522			F	±
46	43302		Dacryodes rugosa	L	+
47	43306		Santiria griffithii	L	+
48	43127		Santiria laevigata	L	3+
49	43127			S	\pm
50	43350	Caesalpiniaceae	Peltophorum pterocarpum	L	2+
51	43309	Chrysobalanaceae	Maranthes corymbosa	S	+
52	43320	Combretaceae	Terminalia superba	L	±
53	143381	Cornaceae	Chionanthus laxiflorus	B	±
54	143381			L	±
55	43344	Cupressaceae	Dacrydium becarii	L	+
56	43344	Cupressaceae	Duci yuunn Occur u	S	$^+$ 2+
50 57	43344		Dacrydium elatum	S L	2+
51	43343			L	+

Table 1. Percent inhibition of extracts (50 µg/well) on specific binding to muscarinic receptor.

(Continued)

L.Y. Chung et al.

No.	Voucher no.	Family	Species	Part ^a	Inhibition ^b
58	43345			S	±
59	143503	Dichapetalaceae	Dichapetalum gelonioides	В	\pm
60	143503	-		L	\pm
61	43308	Dipterocarpaceae	Anisoptera costata	L	+
62	43124		Hopea dryobalanoides	L	2+
63	43124		1 2	Т	2+
64	43112		Neobalanocarpus heimii	L	2+
65	43134		Shorea parvifolia	L	+
66	43134		2	s	2+
67	43324		Upuna borneensis	Ľ	2+
68	43324		epinin connection	S	2+
69	143504	Ebenaceae	Diospyros cauliflora	B	±
70	143504	Ebenaceae	Diospyros campiona	L	±
70	143519		Diospyros tuberculata	B	+
72	143519		Diospyros iudercuiaia	L L	+ ±
72	43273	Flaggermanne	Elassoaumua notislavia		±
		Elaeocarpaceae	Elaeocarpus petiolaris	L	
74	145393	Euphorbiaceae	Borneodendron aenigmaticum	В	±
75	145393			L	±
76	145400		Mallotus griffithianus	В	±
77	145400			L	±
78	145371		Mallotus wrayi	L	2+
79	43108		Phyllanthus emblica	L	+
80	43108			Т	+
81	43338		Phyllanthus pectinata	L	+
82	43137	Fagaceae	Castanopsis inermis	L	+
83	43323	Flacourtiaceae	Flacourtia rukam	L	+
84	145388		Homalium panayanum	В	±
85	145388			L	±
86	43123	Gittiferae	Mesua ferra	L	2+
87	145398	Guttiferae	Calophyllum blancoi	В	±
88	145377		Calophyllum gracilipes	В	+
89	145377		europhymum gruempes	Ĺ	±
90	145385		Calophyllum nodosum	B	±
91	145385		Culophynum nouosum	L	-
92	133842		Garcinia brianii	B	2+
93	133842		Gureinia brianii	L	
93 94	133846		Garcinia cuspidate	B	+ ±
94 95	142698			ь L	2^{\pm}
			Garcinia parvifolia		
96 97	142674	T d	Garcinia rostrata	L	±
97 22	43279	Ixonanthaceae	Ixonanthes reticulata	L	2+
98	145368	Lauraceae	Litsea garciae	В	2+
99	145380		Litsea sessilis	В	2+
100	43339		Persea Americana	L	2+
101	143388	Leguminosae	Dalbergia pseudo-sissoo	В	±
102	143388			L	土
103	43129		Millettia atropurpurea	L	±
104	43138		Sindora echinocalyx	L	+
105	43138			Т	+
106	143360		Spatholobus macropterus	В	±
107	143360			L	±
108	43144	Magnoliaceae	Aromadendron elegans	L	2+
109	143392	Meliaceae	Aglaia affinis	B	+
110	143392		0 99	Ĺ	_
111	143393		Aglaia argentea	B	±
112	143393		-iSiana ai Serrica	L	±
112	143366		Aglaia shawiana	B	±
113 114	143366		215mm Simirum	L L	±
117	1-3300			L	

Muscarinic receptor binding of Malaysian plants

No.	Voucher no.	Family	Species	Part ^a	Inhibition ^b
115	43105		Aglaia korthalsii	L	±
116	143361		Aglaia rivularis	В	±
117	143361			L	±
118	143376		Chisocheton polyandra	В	±
119	143376			L	±
120	143512		Chisocheton erythrocarpus	В	±
121	143512			F	±
122	143512			L	+
123	145367		Chisocheton macranthus	В	±
124	145367			F	+
125	145367			L	2+
126	143513		Chisocheton pentandrus	В	2+
127	143513			L	+
128	142663		Chisocheton polyandrous	L	±
129	143355		Dysoxylum ramiflorum	В	±
130	143355			L	+
131	143364		Dysoxylum rugulosum	В	+
132	143364			L	±
133	43104		Sandoricum koetjape	L	2+
134	43104			T	3+
135	43143		Walsura chrysogene	L	2+
136	145378	Menispermaceae	Fibraurea chloroleuca	F	±
130	145378	Weinspermaceae	1 ioraarea emoroicaea	L	+
138	143518	Moraceae	Ficus septica	L	3+
139	145397	Myrtaceae	Decaspermum fruticosum	B	2+
140	145397	Wryttaceae	Decusperman francosam	L	2+
140	145392	Ochnaceae	Gomphia serrata	B	2+
141	145392	Oeiiiiaceae	Compnia serrata	В L	+ ±
142	43111	Olaceae	Ochanostachys amentacea	L	±
143	145396	Oleaceae	Chionanthus crispus	B	±
144 145	145396	Oleaceae	Chionaninus crispus		±
145 146	143359	Dimana agaa	Din on officia anom	L	±
140 147	143359	Piperaceae	Piper officinarum	L S	±
147	43307	Dedeeerreesee	Vanthonkullum atinitatum		
		Podocarpaceae	Xanthophyllum stipitatum	L	+
149	43329	Rhamnaceae	Maesopsis eminii	L	±
150	145373		Vantilago dichotoma	S	+
151	143525	Rhizophoraceae	Carallia borneensis	L	±
152	43348	D 11	Carallia suffruticosa	L	2+
153	145363	Rubiaceae	Gardenia tubifera	L	+
154	145395		Morinda rigida	В	±
155	145395			L	±
156	145395			S	±
157	145364		Praravinia suberosa	В	±
158	145364			L	±
159	145382		Psychotria sarmentosa	L	±
160	145384		Timonius flavescens	В	±
161	145384			L	±
162	145366	Rutaceae	Clausena excavata	В	±
163	145366			L	±
164	143391		Melicope accedens	В	±
165	143391			L	_
166	143375		Melicope incana	В	±
167	143375			L	_
168	143367		Melicope luna-akenda	L	±
169	143369		Melicope subunifoliata	В	3+
170	143369			L	2+
171	143389		Micromelum minutum	В	±

L.Y. Chung et al.

No.	Voucher no.	Family	Species	Part ^a	Inhibition ^b
172	143389			L	±
173	43325	Sapindaceae	Amesiodendron chinense	L	+
174	43325	-		S	2+
175	43337		Dimocarpus longan	L	2+
176	43337			S	2+
177	43327		Lepisanthes alata	F	±
178	43327			S	2+
179	43106		Nephelium lappaceum	Т	±
180	43310		Nephelium maingayi	L	2+
181	43341		Nephelium rambutanake	L	+
182	43341			S	2+
183	43110		Pometia pinnata	L	2+
184	43110			Т	2+
185	143514		Walsura pinnata	В	+
186	143514			L	±
187	43334	Sapotaceae	Mimusops elengi	L	2+
188	43334			S	\pm
189	43347		Palaquim maingayi	L	+
190	43347			S	+
191	143520	Scyphostegiaceae	Scyphostegia borneensis	В	±
192	143520			L	±
193	43145	Simaroubaceae	Irvingia malayana	L	2+
194	133822		Quassia indica	В	±
195	43311	Sterculiaceae	Heritiera simplicifolia	S	2+
196	145381		Sterculia stipulata	В	±
197	145381			L	±
198	143385	Theaceae	Schima wallichi	В	+
199	143385			L	_
200	145383		Schima wallichii	В	±
201	145383			L	±
202	43275	Tiliaceae	Pentace triptera	L	±
203	145391	Ulmaceae	Gironniera subaequaelis	L	±
204	145375	Urticaceae	Dendrocnide elliptica	В	±
205	145375			L	±
206	145387		Leucosyke winklerii	В	+
207	145387			L	±
208	143378	Verbenaceae	Callicarpa havillandii	В	_
209	143378			L	±
210	106702		Callicarpa erioclona	В	+
211	133850		Callicarpa farinose	В	\pm
212	133849		Callicarpa fulvohirsuta	В	+
213	145389		Callicarpa havilandii	В	+
214	145389			L	±
215	145374		Callicarpa longifolia	L	+
216	106701		Callicarpa stapfii	В	2+
217	106701			L	2+
218	143372		Sphenodesme triflora	В	_
219	143372			L	±
220	145386		Stachytarpeta jamaicencis	S	_
221	43322		Vitex pubescens	L	±
222	145370	Vitaceae	Leea indica	В	2+
223	145370			L	±
224	145379	Zingerberaceae	Alpinia fraseriana	S	±

Extracts were dissolved in 50% DMSO to give a concentration of 2 mg/ml for testing; 25-µl aliquots tested. "B, bark; F, fruit; L, leaf; R, root; S, stem; T, twigs.

^{*b*}4+, inhibition of 81–100%; 3+, inhibition of 61–80%; 2+, inhibition of 41–60%; +, inhibition of 21–40%; \pm , inhibition of 1–20%; –, no inhibition.

bradycardia and Alzheimer disease, whereas selective M3 antagonists affect smooth muscles (chronic obstructive airway disease, irritable bowel syndrome, and incontinence) (Eglen, 1998). To reduce side effects and to improve therapeutic activities, selective muscarinic receptor antagonists have been developed for antiulcer activity (telenzepine; M1/M4 selective; Byk), bradycardia (otenzepad; M2/M4 selective; Boehringer Ingelheim), irritable bowel syndrome (darifenacin; M3/M1 selective; Pfizer), and antibronchospastic activity (rispenzepine; M3/M1 selective; Dompe) (Eglen, 1998).

As part of an ongoing screening program for potential receptor agonists and antagonists Malaysian plants that showed significant muscarinic receptor competitive binding activity were identified. The active crude extracts are subjected to further bioassay-guided isolation of active constituents. Upon successful isolation, the active constituents will be evaluated for their muscarinic receptor subtype selectivity.

Materials and Methods

Chemicals and reagents

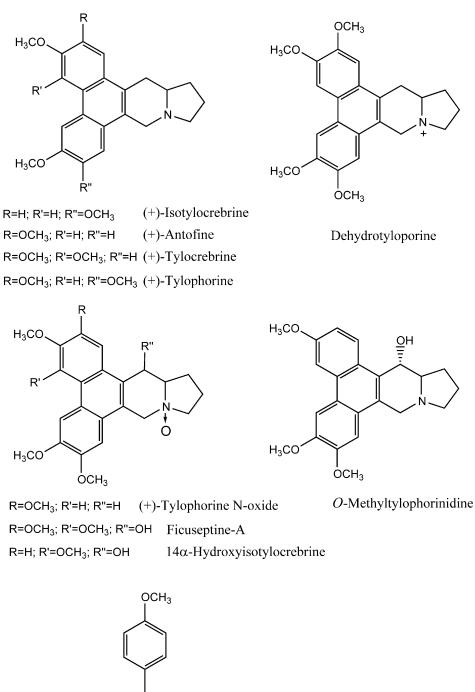
[³H]*N*-Methylscopolamine was supplied by Amersham Pharmacia Biotech UK Ltd. All other reagents were of

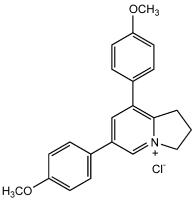
analytical grade and obtained from standard commercial sources (Little Chalfont, Buckinghamshire, UK).

Plant materials

Plant samples were collected from the Forest Research Institute Malaysia, Kuala Lumpur, Malaysia (voucher no.: 5-digits series), and the state of Sabah, Malaysia (voucher no.: 6-digits series). The voucher specimens were kept at the herbaria of Forest Research Institute Malaysia (5-digits series) and Forest Research Center, Sepilok, Sandakan, Malaysia (6-digits series). Different parts of the plants were dried separately at 40°C. The dried materials (100-200 g) were powdered and soaked with sufficient methanol in conical flasks for 7 days with sonication (5 \times sufficient volume of methanol to cover the plant materials). Methanol extracts were collected and filtered at 48, 96, and 168 h, and the conical flasks with plant materials were replaced with fresh methanol to continue extraction. The pooled extracts were evaporated at 50°C in vacuo and the residues freeze-dried and kept in sample bottles at -20° C until use.

Crude extract dilution


DMSO (1 ml) was added to 4 mg of crude plant extracts and vortexed vigorously giving an initial concentration


Table 2. Percent inhibition of extracts (10 µg/well) on specific binding to muscarinic receptor.

No.	Voucher no.	Family	Species	Part ^a	Inhibition ^b
1	43304	Anacardiaceae	Bouea oppositifolia	L	±
2	143506	Annonaceae	Neouvaria acuminatiisima	В	+
3	143511		Polyalthia insignis	В	±
4	143502		Polyalthia longipes	В	±
5	145376		Polyalthia microtus	В	+
6	143524		Polyalthia rumphii	L	+
7	145365		Popowia odoardoi	S	+
8	43125	Apocynaceae	Dyera costulata	L	+
9	43123		Mesua ferra	L	±
10	43127	Burseraceae	Santiria laevigata	L	±
11	43124	Dipterocarpaceae	Hopea dryobalanoides	L	+
12	43112		Neobalanocarpus heimii	L	+
13	145368	Lauraceae	Litsea garciae	В	±
14	43104	Meliaceae	Sandoricum koetjape	Т	±
15	43104			L	±
16	143518	Moraceae	Ficus septica	L	3+
17	43111	Olaceae	Ochanostachys amentacea	L	+
18	43325	Sapindaceae	Amesiodendron chinense	S	±
19	43110	•	Pometia pinnata	L	+
20	43110		•	Т	±
21	106701	Verbenaceae	Callicarpa stapfii	В	+

Extracts were dissolved in 50% DMSO to give a concentration of 0.4 mg/ml for testing; 25-µl aliquots tested. "B, bark; F, fruit; L, leaf; R, root; S, stem; T, twigs.

^b4+, inhibition of 81–100%; 3+, inhibition of 61–80%; 2+, inhibition of 41–60%; +, inhibition of 21–40%; \pm , inhibition of 1–20%; -, no inhibition.

Ficuseptine

Figure 1. Some alkaloids isolated from Ficus species (Baumgartner et al., 1990; Buckingham, 1994; Peraza-Sanchez et al., 2002; Wu et al., 2002).

of 4 mg/ml. The extracts were tested at 50 and $10 \mu \text{g/assay points}$.

Membrane preparation

Total rat brain (minus cerebellum) membrane was prepared according to the protocol described by Gattu et al. (1995) with minor modifications. Male Sprague-Dawley rats (250–300 g) were decapitated and the brains removed. The cerebellum was dissected out and the rest of the brain finely chopped with scissors, homogenized in 10 volumes of ice-cold 50 mM Tris-HCl, pH 7.4, buffer using Ultra-Turax $(2 \times 10 \text{ s})$ and followed by glass-Teflon pestle homogenization at 800 rpm for 20 strokes.

The homogenate was centrifuged at $40,000 \times g$ using Beckman type 28 rotor at 4°C for 15 min. The pellet was retained and washed twice by resuspending in icecold 50 mM Tris-HCl, pH 7.4, buffer (centrifuged at $40,000 \times g$ for 15 min). The final pellet was suspended in 5 ml ice-cold 50 mM Tris-HCl, pH 7.4, buffer, aliquoted and kept at -80° C until use. Protein was determined using the Sigma Total Protein Reagent using

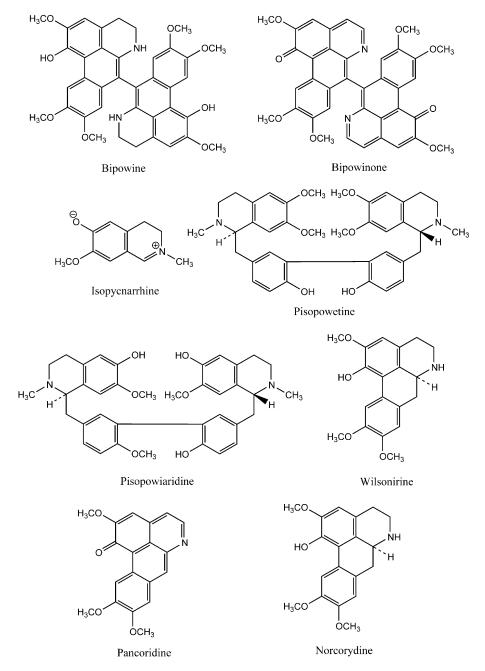


Figure 2. Some alkaloids isolated from Popowia species (Jossang et al., 1986).

bovine serum albumin as the standard, and the protein content corresponded to about 20 mg protein/ml.

Muscarinic receptor binding assay

The muscarinic receptor binding was assayed by a modification of the method of Bockman et al. (2001). Briefly, the membranes were thawed on ice and diluted to 0.75 mg/ml protein using 50 mM Tris-HCl, pH 7.4, buffer. The reference ligand (atropine) and radioligand $([^{3}H]N$ -methylscopolamine) were diluted to 100 μ M and 5 nM final concentration using 50% DMSO in deionized water and binding buffer, respectively.

With its cover removed, the Multiscreen plate (GF-B, Millipore Billerica, MA, USA) was placed on vacuum manifold and the filter of each well prewetted with 200 µl of 50 mM Tris-HCl, pH 7.4, buffer. Radioligand (25 µl) was added to each well of the Multiscreen plate, followed by addition of 25 µl of 50% DMSO (total

R=H

binding, 3 wells), reference compound (nonspecific binding, 3 wells), or crude extracts to the corresponding well in the plate. The reaction was initiated by adding 200 µl of diluted membranes to each well. The plate was then covered, vortexed gently, and incubated at 22°C for 90 min.

The reaction mixture was filtered on the vacuum manifold and washed four-times with 200 µl of ice-cold 50 mM Tris-HCl, pH 7.4. The plate was cleaned with tissues to remove excess buffer and air-dried. The filters were punched out and transferred into 5-ml scintillation vials and 4 ml of scintillation cocktail added. The vials were capped, the content shaken for a few minutes, and radioactivity counted for 3 min per vial, using a scintillation counter (Packard, Meriden, CT, USA).

Data analysis

The percentage inhibitory specific binding in the presence of the test compounds was calculated using a standard

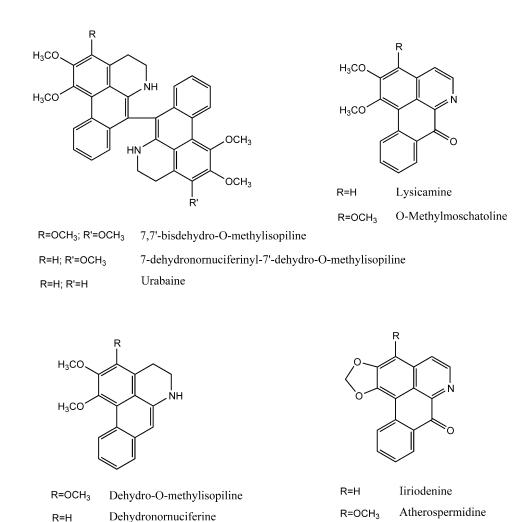


Figure 3. Some alkaloids isolated from Polyalthia species (Jossang et al., 1977; Marsaioli et al., 1977; Connolly et al., 1996; Said et al., 2003).

data reduction algorithm, and it is as follows:

$$\frac{[\mathrm{T}-\mathrm{NSP}]-[\mathrm{B}-\mathrm{NSP}]}{[\mathrm{T}-\mathrm{NSP}]}\times100$$

where B = binding in the presence of test extract, NSP = nonspecific binding in the presence of excess inhibitor (reference ligand), and T = total binding.

Results and Discussion

The crude extracts were initially screened at $100 \,\mu g/assay$ point and above, and under this condition, some of the extracts were not soluble in the assay buffers, which prevented proper filtration of the plates. Consequently, the extracts were screened at $50 \,\mu g/assay$ point (Table 1), and extracts that showed inhibition at and above 61% were retested at $10 \,\mu g/assay$ point. Under this condition, the samples remained soluble, and proper filtration was achieved. The extracts were screened in triplicate and the percentage inhibition averaged (Table 2).

Of these 224 extracts tested at $50 \mu g/assay$ point, 42 (19%) exhibited 41–60% inhibition and 12 (5%) exhibited 61% or higher inhibition. To reduce false-positive results, extracts exhibiting above 61% inhibition and comparators were then tested at $10 \mu g/well$. Of these, only *Ficus septica* gave more than 60% inhibition (65.85 ± 3.75%). Other extracts such as *Polyalthia microtus* (Annonaceae) and *Popowia odoardoi* (Annonaceae) showed $32.63 \pm 1.38\%$ and $35.79 \pm 7.11\%$ inhibition, respectively.

Our preliminary chemical studies and the literature indicate these plants, *Ficus septica* Burm. f., *Polyalthia microtus* Miq., and *Popowia odoardoi* Diels, and related species contain alkaloidal compounds, and some of the reported structures are as shown in Figures 1, 2, and 3. It is conceivable that the active constituents, which inhibited binding of the radioligand, [³H]*N*-methylscopolamine to muscarinic receptors, are probably alkaloids, as known muscarinic receptor agonists and antagonists possess nitrogen moieties. We have, therefore, selected *Ficus septica* Burm. f., *Polyalthia microtus* Miq., and *Popowia odoardoi* Diels for bioassay-guided fractionation to identify the muscarinic active constituents and to ascertain their activities.

Acknowledgments

The project was funded by the Ministry of Science, Technology and the Environment, Malaysia (IRPA 26-02-06-0127). K.F. Yap is supported by the National Science Fellowship, Malaysia.

References

- Baumgartner B, Erdermeier CAJ, Wright AD, Rali T, Sticher O (1990): An antimicrobial alkaloid from *Ficus* septica. Phytochemistry 29: 3327–3330.
- Bockman CS, Bradley ME, Dang HK, Zeng W, Scofield MA, Dowd FJ (2001): Molecular and pharmacological characterization of muscarinic receptor subtypes in a rat parotid gland cell line: Comparison with native parotid gland. J Pharmacol Exp Ther 297: 718–726.
- Bonner TI, Buckley NJ, Young AC, Brann MR (1987): Identification of a family of muscarinic acetycholine receptor genes. *Science 237*: 527–532.
- Buckingham J, ed. (1994): *Dictionary of Natural Products*. New York, Chapman & Hall, p. 769.
- Connolly JD, Haque MDE, Kadir AA (1996): Two 7,7'bisdehydroaporphine alkaloids from *Polyalthia bullata*. *Phytochemistry* 43: 295–297.
- Cragg GM, Newman DJ, Snader KM (1997): Natural products in drug discovery and development. *J Nat Prod* 60: 52–60.
- Eglen RM (1998): Muscarinic receptor antagonists. Pharmacological and therapeutic utility. In: Leff P, ed., *Receptor-based Drug Design*. New York, Marcel Dekker, pp. 273–296.
- Evans WC, Evans D (2002): *Trease & Evan's Pharmacognosy*, 15th ed. London, WB Saunders.
- Gattu M, Terry AV, Buccafusco JJ (1995): A microtechnique for estimation of muscarinic and nicotinic receptor binding parameters using 96-well filtration plates. *J Neurosci Methods* 63: 121–125.
- Jossang A, Leboeuf M, Cave A (1977): Alkaloids of Annonaceae XVII: Alkaloids of *Enantia polycarpa* Engl. *et* Diels. *Planta Med 32*: 249–257.
- Jossang A, Leboeuf M, Cave A (1986): Alcaloides des Annonacées, 65. Alkaloides de *Popowia pisocarpa*, première partie: Nouvelles *bis*benzylisoquinoléines. *J Nat Prod 49*: 1018–1027.
- Kashihara K, Varga EV, Waite SL, Roeske WR, Yamamura HI (1992): Cloning of the rat M3, M4 and M5 muscarinic acetylcholine receptor genes by the polymerase chain reaction (PCR) and the pharmacological characterization of the expressed genes. *Life Sci* 51: 955–971.
- Kubo T, Fukuda K, Mikami A, Maeda A, Takahashi H, Mishina M, Haga T, Haga K, Ichiyama A, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1986): Cloning, sequencing and expression complementary DNA encoding the muscarinic acetycholine receptor. *Nature 323*: 411–416.
- Lefkowitz RJ, Hoffman BB, Taylor P (1990): Neurohumoral transmission: The autonomic and somatic motor nervous systems. In: Gilman AG, Rall TW, Nites AS, Taylor P, eds., *The Pharmacological Basis of Therapeutics*. New York, Pergamon Press, pp. 84–121.

- Liao C-F, Themmen APN, Joho R, Barberis C, Birnbaumer M, Birnbaumer L (1989): Molecular cloning and expression of the fifth muscarinic acetylcholine receptor. J Biol Chem 264: 7328–7337.
- Manly SP, Padmanabha R, Lowe SE (2002): Natural products or not? How to screen for natural products in the emerging HTS paradigm. In: Janzen WP, ed., *High Throughput Screening. Methods and Protocols.* New Jersey, Humana Press, pp. 153–168.
- Marsaioli AJ, Magalhães AF, Rúveda EA, Francisco de AM Reis (1980): ¹³C NMR analysis of some oxoaporphine alkaloids. *Phytochemistry 19*: 995–997.
- Peraza-Sanchez SR, Chai HB, Shin YG, Santisuk T, Reutrakul V, Farnsworth NR, Cordell GA, Pezzuto JM, Kinghorn AD (2002): Constituents of the leaves and twigs of *Ficus hispida*. *Planta Med 68*: 186–188.
- Said M, Hadi AA, Awang K (2003): Alkaloids from *Polylthia sclerophylla*. In: Hamzah AS, Ismail NH, Ariffin

ZZ, Hamzah Z, eds., *Fine Chemicals from Natural Resources*. Malaysia, Pusat Penerbitan Universiti (UPENA) UiTM, pp. 275–279.

- Shu YZ (1998): Review: Recent natural products based drug development: A pharmaceutical industry perspective. J Nat Prod 61: 1053–1071.
- Sokolovsky M (1989): Muscarinic cholinergic receptors and their interactions with drugs. In: Testa B, ed., Advances in Drug Research, Vol. 18. London, Academic Press, pp. 431–509.
- Wu PL, Rao KV, Su CH, Kuoh CS, Wu TS (2002): Phenanthroindolizidine alkaloids and their cytotoxicity from the leaves of *Ficus septica*. *Heterocycles* 57: 2401–2408.
- Zhu M, Bowery NG, Greengrass PM, Phillipson JD (1996): Application of radioligand receptor binding assays in the search for CNS active principles from Chinese medicinal plants. *J Ethnopharmcol* 54: 153–164.