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We study the effect of stochastic feeding costs on animal-based commodities with particular focus on
aquaculture. More specifically, we use soybean futures to infer on the stochastic behavior of salmon
feed, which we assume to follow a Schwartz 2-factor model. We compare the decision of harvesting
salmon using a decision rule assuming either deterministic or stochastic feeding costs. We identify
cases, where accounting for stochastic feeding costs leads to significant improvements as well as
cases where deterministic feeding costs are a good enough proxy. Nevertheless, in all of the cases,
the newly derived rules show superior performance, while the additional computational costs are
negligible. In conclusion, we recommend to use decision rules taking stochastic feeding costs into
account.

Keywords: Optimal stopping; Real options; Commodity futures; Aquaculture

JEL Classifications: G11, G13

1. Introduction

In this paper, we extend the results of Ewald et al. (2017) for
valuation and optimal decision-making in aquaculture man-
agement, taking account of risks attached to a particular input
factor: feed. While feed costs have been clearly identified as a
potential risk factor for aquaculture production, see, for exam-
ple Luna et al. (2023) and Misund (2022), feed cost risk has
not been taken into account in models for valuation and deci-
sion making of aquaculture businesses. This paper is the first
to explore this topic. Its relevance is increased due to higher
recent volatility in commodity markets.

More specifically, we will discuss whether accounting for
the possibility of feeding cost risk in valuation and decision-
making makes a significant impact, given the current scale
of such risk relative to salmon output price risk. This is a
very relevant question for aquaculture businesses and their
investors. In doing so, we introduce a methodology for
comparing stopping rules from different model frameworks
to make a meaningful judgement. To be more precise, we
demonstrate a comparison of different stopping times, when
conditioned on single paths of the underlying stochastic
process. To this end, we will mainly use the Least-Square-
Monte Carlo regression (LSMC) combined with Longstaff

∗Corresponding author. Email: christian.ewald@umu.se

and Schwartz (2001) to perform the backward induction in
the optimal stopping problem for harvesting the salmon. We
also implemented a Deep Learning approach like in Becker et
al. (2021) as a control and observed that it performs well for
this purpose and coincides with the LSMC results.

The focus of this article is to understand the impact of feed-
ing cost risk on the decision making in harvesting farmed
salmon. According to Misund (2022, pp. 28 ff.) a typical blend
of salmon feed consists of soybean meal (30–44 %), soy-
bean oil, rapeseed oil, wheat, corn, fish meal, and fish oil.
The soy-based ingredients make up the majority of the blend
and for this reason, soybean future markets provide a good
proxy for future price development of salmon feed and its risk
characteristics, as well as providing hedging opportunities for
aquaculture businesses.

We will model both commodities, salmon and soy,
using two implicitly coupled† Schwartz 2-factor models (cf.
Schwartz 1997). We will demonstrate, however, that both

† With implicitly coupled we mean that the coupling mechanism is
through possible correlation rather than an explicit coupling of the
corresponding SDEs in the way that the soybean spot price occurs in
the dynamics of the salmon spot price and vice versa. Allowing for
implicit coupling is quite common in multi-commodity models, see,
for example Ellefsen and Sclavounos (2009). An explicit coupling,
however, would likely cause unprecedented challenges in computing
futures prices and beyond this in the calibration of the model.
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empirical data and a sensitivity analysis reveal that the effect
of the coupling is rather weak. Nevertheless, as both salmon
and soy bean prices explicitly occur in the objective function,
both do indeed effect the harvesting decision. We will investi-
gate the impact of the parameters on the harvesting decision,
as well as problems concerning the estimation of the model
parameters. More specifically, we will compare two different
techniques to calibrate the models: the first uses a Kalman
filter as originally suggested by Schwartz (1997); it is being
facilitated by a large number of authors. The second one uses
a nested minimization based on Cortazar and Schwartz (2003)
and is facilitated by a somehow smaller but still considerable
number of authors. Both approaches are conceptually very
different. We find that both methods capture the unobservable
state variables well, but lead to very different estimates for
the model parameters. Both of these different parameter sets,
however, result in a relatively good fit to the future market
data. For pricing futures, this discrepancy may therefore be
less of an issue, but, as we demonstrate, it has a significant
impact on real option valuation and the optimal harvesting
rule discussed in this article. Such model uncertainty seems
to be neglected in the literature and requires more attention in
future investigations of real options.

To simplify things initially, we will first assume that the
two commodities salmon and soy are uncorrelated. For the
specific data sets used in this article, we will provide evi-
dence that supports this assumption in section A. In addition,
however, we also conduct an experiment with hypotheti-
cal (but realistic) non-zero inter-correlations, showing that
such only have a very small impact on the decision mak-
ing and valuation. In this paper, we will focus on stochas-
tic feeding costs in different scenarios, as described further
below.

For an overview of the historical development for salmon
commodity pricing and valuation models, we refer the reader
to Ewald et al. (2017). Additionally, for a comprehensive
treatment of all the economic factors of fish farming we refer
the reader to Misund (2022) and Luna et al. (2023). In this
article, we focus on (stochastic) feeding costs.

Shepherd et al. (2017) discuss salmon feed in detail and
consider supply chain issues, which are implicitly included
in this paper, as in the event of supply shortage, we would
expect the future prices to rise accordingly. Considering sup-
ply chains, we could also look at storage models such as in
Osmundsen et al. (2021). Gomes et al. (2023) investigate
salmon feed intake and overfeeding, which could be linked
to a storage model.

Nevertheless, our article is the first article that looks at the
impact of feed cost risk on the decision making of aquaculture
businesses. There is nothing alike in the literature.

The remainder of this paper is structured as follows: in
section 2, we introduce the underlying commodity price
model, followed in section 2.1 by a description of the
salmon farm features considered in this paper. Afterwards, in
section 2.2, we formulate the optimal decision-making prob-
lem using both deterministic and stochastic feeding costs.
Numerical results will be discussed in section 3. We first
describe the market data in section 3.1, followed by two cal-
ibration algorithms in section 3.2. Following this, we explain
our methodology for comparing stochastic and deterministic
feeding rules in section 3.3. Our main results are presented

and discussed in section 3.4 while the main conclusion of this
paper is summarized in section 4.

2. Mathematical model and framework

Henceforth, let (�,F , Q) be a probability space and Q be
a risk-neutral measure. Moreover, let T > 0 be a finite time-
horizon and r > 0 a fixed deterministic interest rate.

We will use a multi-commodity framework consisting of
initially two independent Schwartz 2-factor models directly
under Q, i.e.

dSi
t = (

r − δi
t

)
Si

tdt + σ i
1Si

tdW i,1
t , Si

0 = si
0 ∈ R≥0,

dδi
t = (

κ i
(
αi − δi

t

) − λi
)

dt + σ i
2dW i,2

t ,

δi
0 = di

0 ∈ R

d〈W i,1, W i,2〉t = ρ idt, i = 1, 2,

d〈W i,n, W j,m〉t = 0, otherwise,

where Wt := (W i,j
t )i,j=1,2 are Brownian motions generating the

σ -algebra (Ft) which is augmented by Q nullsets satisfying
the usual conditions.

The dynamics dSi
t describes the ith commodity’s spot price

with convenience yield described by dδi
t . The parameter σ i

1 >

0 is the spot volatility, κ i > 0 the mean reversion speed of the
convenience yield, αi ∈ R the long-term mean, λi ≥ 0 a risk-
premium and σ i

2 > 0 the volatility of the convenience yield.
It is not difficult to implement the optimal stopping prob-

lem in section 2.2 so as to include intercorrelations for the
Brownian motions. This analysis is deferred to the appendix,
which also presents empirical evidence.†

Henceforth, S1
t will take the role of the salmon spot price

and S2
t will take the role of the soybean spot price. Even

in the case of intercorrelation of S1
t and S2

t , standard tools
for calibration of both commodities can be applied individ-
ually which is referred to section 3.2. In fact, we can use the
results in Schwartz (1997) to obtain an explicit formula of the
futures/forward‡ prices in this model. Including intercorrela-
tions does not change these formulas. We have for given spot
price S ∈ R, convenience yield δ ∈ R and time-to-maturity
	T ≥ 0

F(S, δ, 	T) = S exp

(
−δ

1 − e−κ	T

κ
+ A(	T)

)
,

A(	T) =
(

r − α̂ + 1

2

σ 2
2

κ2
− σ1σ2

κ

)
	T

+ 1

4
σ 2

2
1 − e−2κ	T

κ3

+
(

α̂κ + σ1σ2ρ − σ 2
2

κ

)
1 − e−κ	T

κ2
, (1)

† The stopping problem by itself could even be solved under the
assumption of an explicit coupling, the LSMC algorithm does not
present any major obstacles here. However, a good empirical cali-
bration to future prices allowing for explicit coupling would be very
hard to achieve, if not impossible.
‡ We assume that the interest rate is deterministic and constant.
Therefore, forward and future prices are the same, cf. Björk (2009,
p. 456 Proposition 29.6).
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where α̂ := α − λ
κ

, omitting superscripts i referring to the ith
commodity for ease of notation, thus superscripts have to be
understood as exponents.

2.1. Salmon farm parameters

In this section, we briefly describe the features of a typi-
cal salmon farm, referring the reader to Misund (2022) for
a detailed discussion on general economic issues concerning
salmon farms.

We consider a single farm over one harvesting cycle, hence
financial values correspond to the value of a lease, as dis-
cussed in Ewald et al. (2017). This means that a fish farmer
leases the farm, buys n0 ∈ N smolt, young salmon, and feeds
them till they are ready for harvest, and at time of harvest sells
the fish for the market price and returns the farm. The growth
of the fishes over time depends on various factors like water
temperature, amount and quality of feed, health, etc. We sim-
plify this by considering a deterministic function over time, a
so-called Bertalanffy’s growth function, given by

w(t) := w∞
(
a − b e−ct

)3
,

for parameters a, b, c given in table 1. This function measures
the growth in kg per fish. We assume a constant mortality rate
m > 0 and the total number of fish n(t) at time t is given by

n(t) = n0 exp (−m t) .

Now, we are able to measure the total biomass (in kg) of the
fish farm over time by setting

B(t) = n(t)w(t).

We will consider only two varying factors of production costs:
harvesting costs and feeding costs, all other costs including
labor, medical treatments, capital costs, etc., will be treated as
constants for simplicity. Harvesting costs are given by H0 per
kg of fish, the total harvesting costs of the fish farm at time
t > 0 are therefore

CH(t) = H0 B(t).

Feeding costs will be the main focus of this paper. We use a
conversion rate of how much kg of feed will convert to how
much kg of fish

c := 1.1
kg feed

kg fish
,

a reasonable value. Let F(0) = F0 be the initial feeding cost
for one fish per year. We will infer the feeding costs from the
relative changes of soybean prices S2

t , i.e.

S̃2
t := S2

t

S2
0

,

by using

Fstoch
t = F0S̃2

t , Fdeterm
t = F0E

[
S̃2

t

]
,

and define the discounted cumulative total feeding costs as†

CF(t) =
∫ t

0
e−rs (Fs n(s) (∂tw) (s) c) ds

for general feeding costs Fs, where once more an additional
upper index referring to stochastic versus deterministic is
omitted for ease of notation.

The parameters in table 1 are mostly taken from Ewald
et al. (2017) and references therein. The initial feeding and
harvesting costs are estimated from Misund (2022, p. 25
figure 9). We will use the values in table 1 for the remainder
of this paper.

2.2. Optimal stopping problem

Following Ewald et al. (2017, pp. 8 ff.), the objective of a
fish farmer is to find the optimal harvesting time for salmon
cultivated on the farm, where optimal has to be understood
as maximizing the expected value under a risk-neutral mea-
sure. The latter corresponds to maximizing the financial value
of the farm, when appropriately taking account of relevant
risk premia, see Ewald et al. (2017). We consider the current
value of the fish at their current weight S1

t B(t) minus the har-
vesting costs at CH(t) and the cumulative feeding costs up
to this point in time CF(t). Let X stoch

t := (S1
t , δ1

t , S2
t , δ2

t ) and
X determ

t := (S1
t , δ1

t ). The optimal stopping problem for stochas-
tic and deterministic feeding costs becomes respectively

W stoch
0 (x) := sup

τ stoch

EQ
[

exp (−rτ)
(
S1

τ B(τ ) − CH(τ )
)

−CFstoch(τ )
∣∣ X stoch

0 = x
]

, (2)

W determ
0 (x) := sup

τ determ

EQ
[

exp (−rτ)
(
S1

τ B(τ ) − CH(τ )
)

−CFdeterm(τ )
∣∣ X determ

0 = x
]

. (3)

In this paper, we compare the stopping rules obtained from
W stoch

0 (x) and W determ
0 (x) by evaluating

V z
0(x) := EQ

[
exp (−rτ z)

(
S1

τ z B(τ z) − CH(τ z)
)

−CFstoch(τ z)
∣∣ X stoch

0 = x
]

(4)

for z ∈ {stoch, determ} in an appropriate way as described in
section 3.3, and investigate the question whether V determ

0 (x)
is a good enough approximation of W stoch

0 (x) or alternatively
in which cases it is beneficial to consider the slightly more
complicated stopping rule τ stoch.

We will solve both of the optimal stopping problems
numerically by using least-square Monte Carlo (LSMC), i.e.
a backward induction with the Longstaff and Schwartz (2001)
algorithm and refer the reader to Ewald et al. (2017, pp. 9 ff.)
for the algorithmic details. We use standard polynomials
(monomials) up to power 2 for the regression of the condi-
tional expectations in our implementation.

† The time derivative of the growth is denoted by ∂tw and given by
(∂tw)(t) = 3w∞(a − b e−ct)2 b c e−ct. The term (∂tw)(s) captures
the weight increase of one fish in kg, (∂tw)(s) c the amount of feed in
kg that is required for this growth, n(s)(∂tw)(s) c the total feed and
finally Fs n(s)(∂tw)(s) c the total cost.
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Table 1. Fish farm parameters.

Name Symbol Value Unit

Bertalanffy growth factor a 1.113 –
Bertalanffy growth factor b 1.097 –
Bertalanffy growth factor c 1.43 –
Asymptotic weight w∞ 6 kg
Mortality rate m 10 %
Conversion rate c 1.1 kg feed/ kg fish
Number of recruits n0 10 000 fish
Time horizon T 3 years
Harvesting possibilities N 72 –
Salmon spot price Ŝ1

0 see table 2 NOK/ kg
Production costs PC 0.5 Ŝ1

0 NOK/ kg
Harvesting costs H0 0.1 PC NOK / kg
Feeding costs F0 0.25 PC NOK / kg year
Salmon initial value S1

0 Ŝ1
0 − PC + H0 + F0 NOK/ kg

Soy initial value S2
0 1 –

Figure 1. Interpolated (nearest neighbor) market future surfaces for salmon (left) and soy (right) from 01/01/2006 till 01/01/2023. On the
x-axis are dates identified by integers, on the y-axis the time-to-maturity and on the z-axis the corresponding price. Deep blue associates a
low and yellow a high price.

Remark 2.1. It is not difficult to implement the Deep Optimal
Stopping Network by Becker et al. (2021) and we provide the
code for using this as well. This allows in principle for high-
dimensional optimal stopping problems, which could become
relevant if one considers further stochastic factors. For exam-
ple, using soybean futures as a surrogate for the feeding costs
is a more or less crude approximation of reality, the feed con-
sists of several different ingredients, also including maize and
fish meal (cf. Misund 2022, p. 29 figure 11), all could be mod-
eled stochastically as well. Introducing stochastic mortality
and stochastic growth of the fish would add to the further
dimensions, making a least-square Monte Carlo regression
less and less appealing, as the computational costs increase,
while the deep neural networks copes well.

3. Numerical experiments

In this section, we will carry out some numerical experiments.
In section 3.1, we will briefly discuss the historical data used
for the calibration process as described in section 3.2. After
the calibration, we will compare the different feeding cost sce-
narios by using a pathwise comparison of the stopping rules
obtained from LSMC. Lastly, in section 3.4, we present our
results and draw our main conclusion: In fact, it is benefi-
cial to consider stochastic feeding costs, at least under certain
scenarios which we identify.

For the calibration we used matlab with the (Global)
Optimization Toolbox running on Windows 11 Pro, on a
machine with the following specifications: processor Intel(R)
Core(TM) i9-13900K CPU @ 3.00 GHz and 2x32 GB (Dual
Channel) Kingston DIMM DDR5 RAM @ 5600 MHz. A
GPU did not improve the performance in this case.

For all of our experiments, we will fix the interest rate to
r = 0.0303.

3.1. Market data

We use historical future data from 01/01/2006 till 01/01/2023
for both salmon† and soybeans. This is illustrated in figure 1.
For the plots we used a nearest neighbor interpolation for fixed
date in the direction of the time-to-maturity. A dark blue color
reflects low prices, while a bright yellow color reflects high
prices relative to the individual commodity. On the left-hand
side, we can see the evolution of the salmon future prices
over time for different time-to-maturities and on the right-
hand side for the soybean futures. Notably, the volatility of
these prices seems to increase significantly at the end during
the Covid pandemic. For salmon the prices seem to increase
steadily over time with more rapid increase recently. If we

† The historical salmon future prices are publicly avail-
able onhttps://fishpool.eu/forward-price-history/ (last accessed
04/07/2023 12:45 CEST).
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estimate the spot prices from the smallest time-to-maturity in
these pictures, we can also observe that the majority of the
behavior of the future prices is determined by the spots, since
they appear almost constant or with non-rapid fluctuations on
the time-to-maturity axis for a fixed date.

3.2. Calibration to market data

At the start of this section, we would like to remind the reader
about two well-known techniques for the calibration of multi-
factor commodity pricing models with hidden state variables
to historical futures price data. Since our commodity mod-
els are uncoupled, we will omit once again the dependence
on the individual commodities throughout this entire section.
The first was introduced by Cortazar and Schwartz (2003) as
a nested least square regression, the second one is using a
Kalman filter (cf. Schwartz 1997).

The goal is to find both the model parameters

� := [σ1, σ2, κ , α, λ, ρ],

and the unobservable spots and convenience yields for each
date S ≥ 0, δ ∈ R.

For the calibration procedure, we will restrict ourselves to a
subset of the main dataset. In fact, we only consider the slice
from 01/01/2018 to 01/01/2022, taking only the most recent
price developments into account making a regime-switching
model unnecessary.

We will denote in this section the number of days, where
market future prices are available by K ∈ N and for each date
the number of available maturities by Pi ∈ N. The market
future prices at date i = 1, . . . , K with time-to-maturity 	Tj,
j = 1, . . . , Pi will be denoted by FMarket

ij and the model future
prices depending on the parameters � by F�.

3.2.1. Cortazar and Schwartz (2003). We would like to
minimize the following objective:

min
�

K∑
i=1

Pi∑
j=1

(
log F�

(
Sti , δti , Tj − ti

) − log FMarket
ij

)2

subject to

(Sti , δti) ∈ argminS,δ

Pi∑
j=1

(
log F�

(
S, δ, Tj − ti

)

− log FMarket
ij

)2
for all i = 1, . . . , N .

We need the constraint since the spot price and convenience
yield are not observable. The optimization for the state vari-
ables Sti , δti can be solved efficiently by a linear least-square
regression and for minimizing the objective we use matlab’s
fmincon with the interior-point method. This is a sim-
plified version of the algorithm presented in Cortazar and
Schwartz (2003). It is only used to stress that the model future
prices are mostly determined by the unobservable state vari-
ables and can provide an equally good fit to the market future
prices for very different parameters �.

3.2.2. Kalman filtering. Following Schwartz (1997,
pp. 10 ff.), the idea is to first discretize the log-spot price
st := log(St) and convenience yield under the historical mea-
sure P, e.g. by using an Euler–Maruyama scheme. They are
both normally distributed. Thus, for a homogeneous time grid
(ti)i=1,...,K with step-size 	t, we have

sti+1 = sti + (μ − δti − 1

2
σ 2

1 )	t + σ1	W 1
ti ,

δti+1 = δti + (
κ

(
α − δti

) − λ
)
	t + σ2	W 2

ti .

Letting Xti := [sti , δti ]
� we have the transition equation

Xti+1 = c + T · Xti + ηi,

c :=
[

r − 1
2σ 2

1
κα

]
	t, T :=

[
1 −	t
0 1 − κ	t

]
,

E :=
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
	t

in a so-called state–space formulation. Here ηi ∼ N (0, E)

is serially uncorrelated. Since the spot prices are non-
observable, we need to measure them. For this we use the log-
future prices with different time-to-maturities 	Tj to derive
the measurement equation

Yti = [
d(	Tj)

]
j=1,...,P + [

Z(	Tj)
]

j=1,...,P · Xti + εi,

j = 1, . . . , P, P ∈ N,

d(	T) := A(	T), Z(	T) :=
[

1 −(1−e−κ	t

κ
)

]
,

D := diag
(
d2

1 , . . . , d2
P

)
,

where εi ∼ N (0, D) is serially uncorrelated and independent
of η. Note that ε has to be added as measurement noise
to make the model compatible for Kalman filtering. The
choice of the covariance matrix has a significant impact on
the estimation. We chose in our implementation a diagonal
covariance matrix D. This choice seems to be the stan-
dard for commodity models and has already been used by
Schwartz (1997).

Using different panels, i.e. a collection of different time-to-
maturities 	Tj, can yield significantly different parameters.
The panels are assumed to be fixed throughout the entire fil-
tering, which is a disadvantage compared to Cortazar and
Schwartz (2003), since it can use the entire data set without
any interpolation or averaging. To compare the Kalman fil-
ter to the method by Cortazar and Schwartz (2003), we use a
daily time step for the Kalman filter as well.

The parameters can now be estimated by maximizing
the likelihood of Yti equaling the market log-future prices
and meanwhile estimating the unobservable spot prices and
convenience yields by the Kalman filter. For more details,
we refer to the code and the monographs Harvey (1989,
pp. 100 ff. Chapter 3) and Bishop (2006, pp. 635 ff. Chapter
13.3). We use matlab’s fmincon with the interior-point
method to minimize the negative log-likelihood.
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Figure 2. Close spot and future prices for different model parameters.

3.2.3. Model uncertainty. In figure 2, we compare some
calibration results using the soybean data from 01/01/2018
till 01/01/2022 using both a Kalman filter and Cortazar and
Schwartz (2003). We found the following parameters:

�Kalman = [0.2044, 0.1275, 0.1541, 0.3355,

0.0101, 0.9065],

�CS = [2.1975, 0.4594, 0.4381,

2.2825, 1.3120, 0.4893].

The red color will show all the results using �Kalman and
the green color for �CS. In the upper third of the figure, we
compare the model future prices to the market future prices
for different time-to-maturities on the 16/12/2022, which was
randomly chosen. We can see that both models seem to regress
the market prices (blue crosses) appropriately and they are
very close to each other. In the middle part of the figure,
we compare the inferred spot prices S0 for each date from
01/01/2018 till 01/01/2022. We can also see that both calibra-
tion methods seem to find very similar spot prices. A little
bit more variation can be seen in the inferred convenience
yields in the lower part of the figure, but still very similar.
We would like to stress at this point that the model seems to
produce very similar results with extremely different param-
eters. If one only needs to find the unobservable spot prices
or fit the model to futures prices, then both methods perform
equally well, but if one needs the underlying model for more
complex decision making, this raises a major concern, as in
our case. In fact, for the real option discussed in this paper,
the model parameters will have a significant impact on the
harvesting decision and the valuation of the business. We will
address this problem further in future research.

We believe that the Kalman filter underestimates the real
volatility, while the method by Cortazar and Schwartz (2003)

overestimates it. Since there seems to be a lot of uncertainty
in finding appropriate parameters for our commodity models,
we will use the artificial parameters shown in tables 2 and 3
for our further investigation. These are based on the calibra-
tion results, and chosen such that we can discuss the question
of whether stochastic feeding costs should be considered in
aquaculture investment or whether the effect is negligible. The
mean relative price changes of the commodity models using
the different parameters are illustrated in figure 3. The left
subfigure shows the salmon prices. The red line corresponds
to the scenario down, down, the green line to down, up, and
the blue line to up, up. Similarly for the soy spot prices in the
right subfigure. The red line corresponds to the scenario low
volatility, the green line corresponds to medium volatility, and
the blue line corresponds to high volatility.

We performed many tests and found that the most sensi-
tive parameter for estimating the benefit of using stochastic
feeding costs is σ 2

1 for a given salmon scenario. Moreover,
the closer the feeding costs are to the salmon revenue, the
more the feeding costs matter, which explains our choices
for selecting the salmon scenarios such that we have a mean
decrease, mean stable, and mean increase scenario in prices.
This could be achieved by only adjusting the risk-premium
parameter λ1, since it changes the drift of the convenience
yield and thus the drift of the spot price.

We have made the code publicly available and encourage
the reader to try other parameter configurations.

3.3. Comparison of exercise decisions

To compare the optimal exercise decisions in the different
feeding cost scenarios, we will employ a pathwise comparison
of the stopping times. Let (�,F ,Ft, P) be a filtered probabil-
ity space satisfying the usual conditions, where Ft := σ(Xt) is
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Table 2. Parameters for different scenarios of salmon models.

Scenario σ 1
1 σ 1

2 κ1 α1 λ1 ρ1 δ1
0 Ŝ1

0

Down, down 0.23 0.75 2.6 0.02 0.01 0.9 0.57 95
Down, up 0.23 0.75 2.6 0.02 0.2 0.9 0.57 95
Up, up 0.23 0.75 2.6 0.02 0.6 0.9 0.57 95

Table 3. Parameters for different scenarios of soybean models.

Scenario σ 2
1 σ 2

2 κ2 α2 λ2 ρ2 δ2
0 Ŝ2

0

Low volatility 0.5 0.4 1.2 0.06 0.14 0.44 0 1500
Medium volatility 1 0.4 1.2 0.06 0.14 0.44 0 1500
High volatility 2 0.4 1.2 0.06 0.14 0.44 0 1500

Figure 3. Mean relative changes of salmon (left) and soy (right) prices for the different scenarios in tables 2 and 3.

generated by a stochastic process, and F i
t ⊆ Ft, i = 1, 2, be

two sub-σ -filtrations. Moreover, let τ 1 be an (F1
t )- stopping

time and τ 2 an (F2
t )- stopping time. Now, let us fix a path

(Xt(ω))t≥0, then conditioned on this path the two stopping
times τ 1(ω) ∈ [0, T] and τ 2(ω) ∈ [0, T] can be compared as
real numbers.

Additionally, still conditioned on (Xt(ω))t≥0, we may com-
pare the stopped values of a stochastic process Yt, i.e. Yτ 1(ω)

and Yτ 2(ω).

3.4. Results

In this section, we will assume stochastic feeding costs and
demonstrate the differences and improvements when the opti-
mal stopping rules obtained from accounting for stochastic
feeding costs are employed as compared to the case where
deterministic feeding costs are assumed. We compare all the
different scenarios using all the combinations of the parame-
ters given in tables 2 and 3. For the pathwise comparison of
the stopping times, we used M = 10 000 simulations in the
LSMC, which takes roughly 1 second (roughly 0.6 seconds to
generate the stochastic processes and 0.1 for the actual LSMC
algorithm) on the CPU in the case of stochastic feeding costs.
We repeat these calculations m = 10 000 times to compute
the 95% confidence intervals of our results. We used stan-
dard polynomials (monomials) up to degree 2 as a regression
basis.

In table 4, we show a metric for the relative improvement of
using stochastic feeding costs compared to deterministic feed-
ing costs. For this we use the pathwise comparison denoted by

RIτ := V τ ,stoch
0

V τ ,determ
0

. The value is the mean of the m = 10 000 tri-

als as aforementioned and in brackets are the 95% confidence
intervals.

As expected, we note in the case of low vol (first row of
table 4) that the benefit of using a stopping rule accounting for
the stochastic nature of the feed costs is only slightly better
than its deterministic counterpart. In this case, deterministic
feeding costs seem to be a good approximation. The bene-
fit of using stochastic feeding costs, however, increases up to
11.6 % the higher the volatility, for the scenario of declining
salmon prices.

In table 5, we present the corresponding values of the fish
farm (4) using the different stopping rules for all of the sce-
nario combinations. We only present the mean of the m =
10 000 trials in this table to make it more readable and refer
the reader to the code† for the quite narrow confidence inter-
vals and other statistics. Furthermore, we stress how much
these values change in relation to changes in the risk-premium
λ1, showing that the decision making in the real option is very
sensitive to the model parameters.

Let us focus on the first column in table 5, the down, down
scenario. The values V τ ,determ

0 are close to each other regard-
less of the volatility scenario for the feeding costs. On the
other hand, the values V τ ,stoch

0 differ significantly and increase
with higher volatility. This means if the model is misspecified
with e.g. too low volatility, then the deterministic stopping
rules will produce less revenue than the stochastic stopping
rules, which can benefit from the higher volatility.

† See https://github.com/kevinkamm/AquacultureStochasticFeeding/
tree/main/Python/Statistics.
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Table 4. Relative improvements using stochastic feeding costs. Mean with con-
fidence intervals using m = 10 000 trials each with M = 10 000 simulations for

LSMC.

Salmon
’

Soy Down, down Down, up Up, up

Low vol RIτ = 1.0045 RIτ = 1.0027 RIτ = 1.0004
(1.0040, 1.0051) (1.0020, 1.0034) (0, 9999, 1.0010)

Medium vol RIτ = 1.0301 RIτ = 1.01940 RIτ = 1.0052
(1.0296, 1.0307) (1.0187, 1.0200) (1.0046, 1.0058)

High vol RIτ = 1.1203 RIτ = 1.0926 RIτ = 1.0478
(1.1195, 1.1211) (1.0918, 1.0934) (1.0472, 1.0485)

Table 5. Value of (4) using stochastic feeding costs with different stopping rules.

Salmon

Soy Down, down Down, up Up, up

Low vol V τ ,determ
0 = 1 922 265 V τ ,determ

0 = 2 397 588 V τ ,determ
0 = 3 897 333

V τ ,stoch
0 = 1 930 654 V τ ,stoch

0 = 2 403 022 V τ ,stoch
0 = 3 898 161

Medium vol V τ ,determ
0 = 1 951 032 V τ ,determ

0 = 2 429 512 V τ ,determ
0 = 3 933 336

V τ ,stoch
0 = 2 009 449 V τ ,stoch

0 = 2 475 496 V τ ,stoch
0 = 3 952 845

High vol V τ ,determ
0 = 2 004 857 V τ ,determ

0 = 2 488 747 V τ ,determ
0 = 3 998 265

V τ ,stoch
0 = 2 244 406 V τ ,stoch

0 = 2 717 344 V τ ,stoch
0 = 4 187 842

If the initial feeding costs would have been 50 % of the pro-
duction costs, then e.g. in the case down, up with medium vol
the benefit of using stochastic feeding costs would increase to
roughly 8 %. This is similar for all the other cases as well and
highlights the importance of determining the correct relation-
ship of salmon revenue and feeding costs. For feeding costs
between 25% and 50% of the production costs the benefit will
lie in between 1.5% and 8%. Thus the benefits presented in
table 4 can be understood as a lower bound.

4. Conclusion

In this article, we focused on the question of whether account-
ing for stochastic feeding costs can significantly improve
aquaculture decision making and increase the financial value
of an aquaculture business as compared to the case when
deterministic feeding costs are assumed. We found a partial
answer: if the volatility of the feed price is high enough,
then it is beneficial to use stochastic feeding costs, otherwise
deterministic feeding costs can lead to an almost equal per-
formance. In none of the cases, however, does the inclusion
of stochastic feeding costs lead to impaired performance, and
as the computational effort only marginally increases when
using our proposed methodology, we highly recommend to
adopt relevant models to account for feeding cost risk.

We found that there is a lot of model uncertainty, high-
lighted by the significantly different parameters obtained
from Kalman filtering and the technique by Cortazar and
Schwartz (2003). Since this has a major impact on the real
option, both value and exercise, it needs to be addressed in
future work. To this end, we would like to add a control

to the objective (3) in terms of a model-free decision rule,
based on so-called myopic look ahead and k-step ahead rules
(cf. Ross 1971). It might be possible to add such a control
also to the Kalman filter allowing for more robust parameter
estimations.

In the line of feeding costs, we have seen that the relative
difference of the salmon prices to the feeding costs is impor-
tant. If salmon prices are much higher/lower than feeding
costs and tend to increase/decrease a lot, then the stochastic
nature of the feeding costs may be negligible/dominating. To
investigate this further, one could also study a more realis-
tic case, in which storage for the feed is available, as well as
optimal pairs of buying time and buying quantity combined
with an adjustable feeding rate per day. Another opportunity
for future research is to further investigate the correlation
between salmon price and salmon feed and how this should be
implemented and estimated in classical multi-factor commod-
ity models. An application of reinforcement learning comes to
mind to tackle this problem.

Moreover, we are interested in a case where the intercorre-
lations of the commodities may be stochastic as well. As this
leads to a full correlation matrix, it can be modeled with a
stochastic process taking values in an appropriate Lie-group
like in Muniz et al. (2021). For this the techniques developed
in Muniz et al. (2022) and Kamm et al. (2021) may be very
helpful.

In Misund (2022, pp. 40–45), it is argued that biological
costs due to, e.g. salmon lice treatments are of equal size to
the feeding costs. Thus, in future studies, one should address
a similar question for stochastic mortality or at an even deeper
level of detail, look at how host–parasite models and costs for
salmon lice treatments can be implemented with the classical
salmon farm model.
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Appendix. The impact of intercorrelations

In this section, we will discuss the impact of intercorrelations of
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of both commodities are unobservable, we discuss several differ-
ent ways to infer the correlation from the future data using similar
techniques as for the calibration.

We only have one realization of the time series and to eliminate
effects from common drifts of the commodities such as inflation, we
will use the first difference technique to extract all of our correla-
tions. Moreover, it is implied that the distribution, from which we
suspect the unobserved state variables to come from, is stationary.
This allows us to consider for the computation of the correlation
the time series as a vector of realizations from the same distribu-
tion and we can compute statistics on this. To be more precise,
let Zj

ti , i = 1, . . . , n, j = 1, 2, be two time series, we compute the
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Cov
(

Ẑ1, Ẑ2
)

= 1

n

n∑
i=1

(
Ẑ1

ti − Mean
(

Ẑ1
)) (

Ẑ2
ti − Mean

(
Ẑ2

))
.

In our experiments we have n = 754 coming from roughly 250 busi-
ness days per year over the time span of 3 years. Using matlab’s
2023a’s corrcoeff under standard assumptions this implies that
only correlations outside of the interval [−0.07, 0.07] can be consid-
ered as statistically significant. This result is based on the classical
assumption that the standard errors follow a student’s t-distribution.

A.1. From filtered spots

Both the Kalman filter and the method by Cortazar and
Schwartz (2003) give an estimate of the log-spot prices and
the convenience yield. We use these time series to conduct our
correlation study in this section. Define Zti := (Z1

ti , Z2
ti , Z3

ti , Z4
ti ) :=

(X̂ 1
ti , δ̂1

ti , X̂ 2
ti , δ̂2

ti ), then we have for example that the correlation of

Ẑ1
ti and Ẑ3

ti represents the correlation between the log-spot prices of
salmon and soybean.

In table A1, we show the intracorrelations ρ12, ρ34 together with
the intercorrelations inferred from the filtered time series. The first
column refers to the panel used in the computation of the Kalman fil-
ter, so future contracts with maturities of x months. We used the same
panel for both commodities. We can see that most of the correlations
are similar among different panels, except for the intra-correlation of
soybean log price and convenience yield. All the intercorrelations are
less than |ρ| ≤ 0.065, which we interpret as insignificant. Similarly,
using the inferred log-spot prices and convenience yields using the
method by Cortazar and Schwartz (2003) yields the following corre-
lations: ρ12 = 0.9572, ρ13 = 0.0507, ρ14 = 0.0385, ρ23 = 0.0641,
ρ24 = 0.0489 and ρ34 = 0.9446. Again the intercorrelations appear
to be insignificant.

A.2. Joint Kalman filter

Let us briefly derive the state–space model for the joint Kalman fil-
ter under the historical measure P for both salmon and soybeans.
The assumption is that all the Brownian motions involved are corre-
lated. Then we can proceed exactly like Schwartz (1997, pp. 10 ff.).
We denote with X i

t := log(St) the log-spot price, whose dynamics is
given by

dX i
t =

(
μi − 1

2
(σ i

1)
2 − δi

t

)
dt + σ i

1dWi,1
t .

We discretize both X i and δi by the Euler–Maruyama scheme on a
homogeneous time grid T n := {(tk)k=1,...,n : tk = (k − 1)	t, 	t =

T
(n−1)

}, i.e. for 	Wtk := Wtk+1 − Wki

X i
tk+1

= X i
tk +

(
μi − 1

2
(σ i

1)
2 − δi

tk

)
	t + σ i

1	Wi,1
tk ,

δi
tk+1

= δi
tk + κ i

(
αi − δi

tk

)
	t + σ i

2	Wi,2
tk .

Now, we want to find matrices ct, Qt, �t, such that the transition
equation is given by

[
X 1

tk , δ1
tk , X 2

tk , δ2
tk

]� = ctk + Qtk

[
X 1

tk−1
, δ1

tk−1
, X 2

tk−1
, δ2

tk−1

]� + ηtk ,

ηtk ∼ N
(
0, �tk

)
,

where ηt are serially uncorrelated and we want to find matrices
dt, Zt, Ht, such that the measurement equation (Yt takes the role of
the log-future prices of both commodities) is given by

Ytk (	T1, 	T2)

= dtk (	T1, 	T2) + Ztk (	T1, 	T2)
[
X 1

tk , δ1
tk , X 2

tk , δ2
tk

]�

+ εtk , εt ∼ N (0, Ht),

where εt are serially uncorrelated and 	Ti refers to the time-to-
maturity for the future contracts of the commodities i = 1, 2.

The coefficients for the transition equation are given by

ct ≡
[
μ1 − 1

2
(σ 1

1 )2, κ1α1, μ2 − 1

2
(σ 2

1 )2, κ2α2,

]�
,

Qt ≡

⎡
⎢⎣

1 −	t 0 0
0 1 − κ1	t 0 0
0 0 1 −	t
0 0 0 1 − κ2	t

⎤
⎥⎦ ,

�2
t ≡

⎡
⎢⎢⎣

(σ 1
1 )2 σ 1

1 σ 1
2 ρ12 σ 1

1 σ 2
1 ρ13 σ 1

1 σ 2
2 ρ14

σ 1
2 σ 1

1 ρ12 (σ 1
2 )2 σ 1

2 σ 2
1 ρ23 σ 1

2 σ 2
2 ρ24

σ 2
1 σ 1

1 ρ13 σ 2
1 σ 1

2 ρ23 (σ 2
1 )2 σ 2

1 σ 2
2 ρ34

σ 2
2 σ 1

1 ρ14 σ 2
2 σ 1

2 ρ24 σ 2
2 σ 2

1 ρ34 (σ 2
2 )2

⎤
⎥⎥⎦	t.

Let Fi(	Ti) denote the future prices (1). The coefficients for the
measurement equation are given by

Ytk (	T1, 	T2) = [log F1(S1
tk , δ1

tk , 	T1), log F1(S1
tk , δ1

tk , 	T1)]�,

dtk (	T1, 	T2) = [A1(	T1), A2(	T2)]�,

Zt(	T1, 	T2) =
⎡
⎣ 1 − 1−e−κ1	T1

κ1 0 0

0 0 1 − 1−e−κ2	T2

κ2

⎤
⎦ ,

Ht ≡ diag(h1, h2),

with the obvious changes if there are multiple maturities in the
different panels of the two commodities.

In table A2, we show the parameters found by the joint Kalman
filter and in table A3 we show similar to table A1 the correlations
inferred from the filtered log-spot prices and convenience yield.
Again, we present the correlations for different panels used in the
Kalman filter, we used the same panels for both commodities. In all
cases, the values of tables A2 and A3 are very close, which also
serves to validate our choice of using the first difference technique
for the filtered time series. In these tests, the values of the correlations
except for ρ12 differ among the different panels, which raises the
question of parameter uncertainty and the suitability of the Kalman
filter for this problem again.

Moreover, in all cases, we have for the intercorrelations |ρ| ≤ 0.2.
This is higher than in section A.1 but still not a particular high
correlation either, but now we have some statistically significant cor-
relations. We show in the third part of the appendix though, that the
impact of correlations of this magnitude is very minor while perfor-
mance improvement through the inclusion of stochastic feed-costs
(whether correlated or not) is still being guaranteed.

Table A1. Correlation matrix inferred from filtered log-spot prices and convenience yield using two
separate Kalman filters for salmon and soybean.

Panel ρ12 ρ13 ρ14 ρ23 ρ24 ρ34

[1, 2, 3, 4, 5, 6] 0.9560 0.0225 − 0.0107 0.0130 − 0.0244 0.4957
[1, 2, 6, 7, 11, 12] 0.9334 0.0133 0.0058 − 0.0151 − 0.0261 0.7849
[6, 7, 11, 12, 15, 16] 0.9833 − 0.0596 − 0.0382 − 0.0679 − 0.0436 0.9232
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Table A2. Correlation matrix deduced by a joint Kalman filter for salmon and soybean.

Panel ρ12 ρ13 ρ14 ρ23 ρ24 ρ34

[1, 2, 3, 4, 5, 6] 0.944 0.011004 0.13451 0.052189 0.1236 0.19658
[1, 2, 6, 7, 11, 12] 0.93374 0.030779 0.11054 0.058464 0.09726 0.52233
[6, 7, 11, 12, 15, 16] 0.99687 − 0.16528 − 0.10078 − 0.16908 − 0.10595 0.87066

Table A3. Correlation matrix inferred from filtered log-spot prices and convenience yield using a
joint Kalman filter for salmon and soybean.

Panel ρ12 ρ13 ρ14 ρ23 ρ24 ρ34

[1, 2, 3, 4, 5, 6] 0.9501 0.0637 0.1328 0.0826 0.1310 0.1259
[1, 2, 6, 7, 11, 12] 0.9500 0.0612 0.0910 0.0727 0.0751 0.5784
[6, 7, 11, 12, 15, 16] 0.9963 − 0.1886 − 0.1406 − 0.1932 − 0.1467 0.8852

A.3. Case study

In this small section, we investigate the impact of the intercorrela-
tions on the gain due to using a stochastic feeding model and the
farm value using the stopping rule based on stochastic feeding costs.

Let ρ1 and ρ2 denote the correlations from tables 2 and 3,
respectively. We define our test correlation matrix as follows:

ρ : [−1, 1] → R4,4, ρ(x) :=

⎡
⎢⎢⎣

1 ρ1 x x
ρ1 1 x x
x x 1 ρ2

x x ρ2 1

⎤
⎥⎥⎦ .

Since the highest intercorrelation we saw in the previous sections
was ±0.2 we perform two tests in all scenarios with all parame-
ters as in tables 2 and 3 but now with the full correlation matrices
ρ(0.2) and ρ(−0.2). We add in table A4 the relative improvements,
defined in section 3.4, denoted by RI+ and RI−, respectively, to
table 4. Each entry contains the mean of m = 10 000 runs with M =

10 000 simulations for the LSMC algorithm and the 95% confidence
intervals.

We can see that the intercorrelations had almost no impact on the
relative improvements due to the stochastic stopping rule, except in
the high-volatility scenario combined with the decreasing salmon
price with a difference of roughly 1% between the case without
intercorrelations and the positive intercorrelations.

In table A5, we present the impact of the positive and negative cor-
relations scenario on the farm value W stoch

0 . We can see in all cases,
that negative intercorrelations will lessen the farm value and posi-
tive intercorrelations will increase the farm value. This is intuitive,
as salmon prices contribute to revenue and soy bean prices to cost, so
a positive correlation achieves some diversification affect in the prof-
its while negative correlations have the opposite effect. However, the
changes in the farm value are very small for all the cases.

Since the code is publicly available, we invite the reader to use
different parameters to validate these tests.

Table A4. Relative improvements using stochastic feeding costs with full corre-
lation matrix.

Salmon

Soy Down, down Down, up Up, up

Low vol RIτ = 1.0045 RIτ = 1.0027 RIτ = 1.0004
(1.0040, 1.0050) (1.0020, 1.0034) (0.9998, 1.0010)
RI+ = 1.0049 RI+ = 1.0023 RI+ = 1.0004

(1.0045, 1.0053) (1.0017, 1.0029) (0.9998, 1.0010)
RI− = 1.0045 RI− = 1.0018 RI− = 1.0004

(1.0041, 1.0049) (1.0011, 1.0019) (0.9998, 1.0010)
Medium vol RIτ = 1.0301 RIτ = 1.0194 RIτ = 1.0052

(1.0306, 1.0296) (1.0188, 1.0200) (1.0046, 1.0058)
RI+ = 1.0293 RI+ = 1.0194 RI+ = 1.0058

(1.0289, 1.0297) (1.0189, 1.0199 (1.0053, 1.0063)
RI− = 1.0299 RI− = 1.0179 RI− = 1.0043

(1.0295, 1.0303) (1.0173, 1.0185) (1.0036, 1.0050)
High vol RIτ = 1.1203 RIτ = 1.0926 RIτ = 1.0478

(1.1195, 1.1211) (1.0934, 1.0918) (1.0472, 1.0484)
RI+ = 1.1110 RI+ = 1.0883 RI+ = 1.0478

(1.1104, 1.1116) (1.0876, 1.0890) (1.0471, 1.0485)
RI− = 1.1252 RI− = 1.0941 RI− = 1.0471

(1.1245, 1.1259) (1.0933, 1.0949) (1.0464, 1.0478)
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Table A5. Farm values using stochastic feeding costs with full correlation matrix.

Salmon

Soy Down, down Down, up Up, up

Low vol ρ = 0: 1 930 654 ρ = 0: 2 403 022 ρ = 0: 3 898 161
ρ = −0.2: 1 925 131 ρ = −0.2: 2 397 483 ρ = −0.2: 3 896 229
ρ = 0.2: 1 937 654 ρ = 0.2: 2 407 189 ρ = 0.2: 3 899 199

Medium vol ρ = 0: 2 009 449, ρ = 0: 2 475 496 ρ = 0: 3 952 845
ρ = −0.2: 1 996 878 ρ = −0.2: 2 464 371 ρ = −0.2: 3 946 433
ρ = 0.2: 2 022 187 ρ = 0.2: 2 486 452 ρ = 0.2: 3 958 609

High vol ρ = 0: 2 244 406 ρ = 0: 2 717 344 ρ = 0: 4 187 842
ρ = −0.2: 2 233 547 ρ = −0.2: 2 708 055 ρ = −0.2: 4 181 273
ρ = 0.2: 2 255 045 ρ = 0.2: 2 728 003 ρ = 0.2: 4 196 131
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