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The computation of credit risk measures such as exposure and Credit Value Adjustments (CVA)
requires the simulation of future portfolio prices. Recent metrics, such as dynamic Initial Margin
(IM) and Margin Value Adjustments (MVA) additionally require the simulation of future conditional
sensitivities. For portfolios with non-linear instruments that do not admit closed-form valuation for-
mulas, this poses a significant computational challenge. This problem is addressed by proposing a
static replication algorithm for interest rate options with early-exercise features under an affine term-
structure model. Under the appropriate conditions, we can find an equivalent portfolio of vanilla
options that replicate these products. Specifically, we decompose the product into a portfolio of Euro-
pean swaptions. The weights and strikes of the portfolio are obtained by regressing the target option
value with interpretable, feed-forward neural networks. Once an equivalent portfolio of European
swaptions is determined, we can leverage on closed-form expressions to obtain the conditional prices
and sensitivities, which serve as an input to exposure and SIMM-driven MVA quantification. For a
consistent forward sensitivity estimation, this involves the differentiation of the portfolio-weights.
The accuracy and convergence of the method is demonstrated through several representative
numerical examples, benchmarked against the established least-square Monte Carlo method.

Keywords: Static replication; Bermudan swaptions; Affine term-structure modeling; Counterparty
credit risk; Initial Margin; CVA; MVA

1. Introduction

This research contributes to the quantification of risk mea-
sures related to counterparty credit risk (CCR) for interest
rate derivatives that are traded over-the-counter (OTC). CCR
refers to the risk that the counterparty in a bilateral agreement
may default before the final settlement of every cash-flow
and will fail to meet its financial obligations (Bank for Inter-
national Settlements 2019). This type of risk has gained a
lot of attention in the aftermath of the global financial cri-
sis of 2007–08. Since then, the regulators have introduced
numerous measures to mitigate systemic credit risk that have
resulted in quantifying CCR through various value adjust-
ments (xVA) (Gregory 2020). The family of xVAs includes
CVA, which is defined as the expected loss that is incurred
from a counterparty defaulting. Other xVAs quantify the
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cost related to funding, collateral and capital requirements.
A general introduction to the challenges related to CCR
quantification can be found in Zhu and Pykhtin (2007).

An important means to reduce CCR for uncleared OTC
derivatives is to post collateral (Gregory 2020). For interest
rate derivatives we can in general distinguish two types of
collateral: Variation Margin (VM) and Initial Margin (IM).
VM matches the current value of the underlying portfolio
and needs to be updated on a regular basis. The funding
cost related to VM is known as FVA and is reflected by the
expected exposure of the portfolio (Burgard and Kjaer 2013),
similar to CVA. Posting VM significantly reduces the expo-
sure to counterparty risk but does not bring it down to zero.
Typically there will be a delay between the event of default
and the settlement of all outstanding positions, which is
known as the margin period of risk (Gregory 2020). IM serves
as a protection against exposure changes due to market moves
during this close-out period. In general, IM is supposed to
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cover the potential future exposure of a contract over a time-
horizon of 10 business days with a 99% confidence. In that
regard, the volume of IM typically reflects the 99% value-
at-risk of the 10-day move in portfolio value. A portfolio’s
VaR varies over time and should therefore (just like VM) be
updated on a regular basis.

A VaR measure is highly model-dependent and compu-
tationally intensive to quantify. To address these problems,
the International Swaps and Derivatives Association (ISDA)
has developed the Standard Initial Margin Model (SIMM).
Since its publication in 2016, SIMM has become an industry-
standard approach to IM quantification. Benefits of such a
common methodology include a transparent dispute reso-
lution and a consistent regulatory governance of collateral
(International Swaps and Derivatives Association, Inc 2016).
In short, SIMM is a sensitivity-based approach, in which VaR
measures are approximated using the instrument’s sensitiv-
ity to the shock of an underlying risk-factor. For the user of
SIMM, this means that IM quantification reduces to the cal-
culation of a set of bucketed portfolio sensitivities, such as
Delta and Vega.

The exchange of collateral needs to be funded, which
comes at a cost for the dealer. The total expected funding cost
over the life-time of a derivative contract is known as the Mar-
gin Value Adjustment (MVA) (Green and Kenyon 2015) and
is a recent addition to the xVA-collection. An ISDA margin
survey reported that market participants collected over $300
billion of IM for non-cleared derivatives at year-end 2021
(International Swaps and Derivatives Association, Inc 2021).
Due to its volume, an adequate quantification and manage-
ment of IM-induced funding cost is highly relevant. Under
the assumption that the size of IM is implied by SIMM and
thus by sensitivities, it follows that MVA is driven by the
future distribution of portfolio sensitivities over the life-time
of the trade. Within a Monte Carlo simulation framework,
this means sensitivities need to be calculated along the Monte
Carlo path. For vanilla derivatives, which admit closed-form
Greeks, the computational cost may be manageable. However,
for exotic derivatives, such as options with early-exercise
features, this is a demanding problem.

In this work, we present a universal approach to the com-
putation of prices, Greeks, exposures and sensitivities along
the Monte Carlo path for callable interest rate derivatives.
Our focus will be on Bermudan swaptions, which is a class
of exotic OTC derivatives that is heavily traded in the mar-
ket. Our methodology is an extension of the work presented in
Lokeshwar et al. (2022) and Hoencamp et al. (2023) and relies
of the concept of static replication. A static replication is a
portfolio of vanilla instruments, that mirrors the value of the
original exotic option, until it is either exercised or matured.
The portfolio composition of a static replication is constant
throughout the life-time of the trade. This is in contrast with
a dynamic replication, which needs to be continuously re-
balanced (such as a traditional Delta hedge), or a semi-static
replication, which needs to be re-balanced on a finite number
of instances. The decomposition of a complex product into a
portfolio of vanilla options greatly simplifies its risk analysis
and allows for an efficient price and sensitivity calculation.

In the context of CVA, methodologies that facilitate
efficient exposure calculations, have received a lot of

attention in the recent literature. Ordinary least-square regres-
sion techniques for American-style options embedded in
a simulation framework, have been popularized by Car-
riere (1996), Tsitsiklis and Van Roy (2001) and Longstaff
and Schwartz (2001). For exposure purposes, this regres-
sion methodology is extended by Joshi and Kwon (2016) and
Feng et al. (2016) to reduce regression bias and noise along
the Monte Carlo path. In other works, Monte Carlo meth-
ods have been combined with finite-difference estimation (De
Graaf et al. 2014, Simaitis et al. 2016), the COS-method
(Shen et al. 2013, Feng et al. 2016), the Stochastic Grid
Bundling Method (SGBM) (Karlsson et al. 2016) and Cheby-
shev interpolation (Glau et al. 2021). In recent advances,
machine learning has been applied to facilitate efficiency in
exposure calculations. This includes a Deep Optimal Stop-
ping algorithm to estimate the exercise strategy (Andersson
and Oosterlee 2021) and a Deep xVA Solver, which relies on
a neural network-based BSDE solver.

The publication of SIMM and the increasing significance of
MVA have been incentives to investigate methodologies that
facilitate efficient sensitivity calculation. For practitioners, the
default approach is ‘bump-and-reval’, due to its simplicity
and straight-forward implementation. For spot calculations,
this is feasible, but for an application such as MVA, it would
imply path-wise model re-calibration and option re-evaluation
for each scenario, time-step and sensitivity-component. Thus,
the computational burden would be excessive. In Glasser-
man (2004), unbiased Monte Carlo sensitivity estimators are
proposed, which yield better convergence properties than the
traditional finite-difference estimator. These are known as
the likelihood ratio method, which relies on differentiating
the payoff probability density, and the path-wise derivative
method, which relies of differentiating the payoff function
itself. Yet the computational improvement of these methods
can be limited for path-dependent instruments.

The application of algorithmic differentiation (AD) to the
path-wise derivative method has been shown to yield a
significant efficiency gain. The concept of AD is that the
estimation routine is decomposed into a series of basic oper-
ations, which are differentiated by a repeated application of
the chain rule (Griewank and Walther 2008). The differen-
tiation is either performed in a forward iteration (tangent
mode) or backward iteration (adjoint mode, AAD). See for
example Giles and Glasserman (2006), Capriotti (2011) or
Capriotti et al. (2017) for an application with American-style
derivatives. The tangent mode is efficient if the number of
independent variables (i.e. the dimensionality of the func-
tion input) is small. It is therefore less suitable for the cal-
culations of large gradients. In contrast, the adjoint mode
is efficient if the number of dependent variables (i.e. the
dimensionality of the function output) is small. A limita-
tion of AAD, however, is that it is demanding in terms of
memory and its implementation is often technical. Others
have combined adjoint differentiation with LSMC (Antonov
et al. 2017, Caspers and Lichters 2018), stochastic automatic
differentiation (Fries 2019) or SGBM (Jain et al. 2019). Alter-
native approaches to path-wise sensitivity approximations
include principal component analysis (Kappen 2017), Cheby-
shev interpolation (Zeron and Ruiz 2018) and least-square
regression (Lakhany and Zhang 2021).
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With a focus on Bermudan swaptions under an affine term-
structure model, our contribution to the literature is three-
fold. First we extend the semi-static replication algorithm
that is presented in Lokeshwar et al. (2022) and Hoencamp
et al. (2023) to a replication approach that is truly static.
The method is based on formulating the portfolio optimiza-
tion as the regression of a shallow neural network to the
target’s option value. As a result, the trained parameters rep-
resent the weights and strikes of the portfolio composition.
Second, we show that with the proper constraints on the
regression, a Bermudan can be replicated with a portfolio of
European swaptions. The accuracy is demonstrated through
several numerical examples. Thirdly, we derive efficient esti-
mators for sensitivities along the Monte Carlo path, which
serve as an input to dynamic IM quantification. Here we
exploit the fact that Deltas and Vegas of European swaptions
are available in closed-form. We also show that for complete
and accurate sensitivities, a differentiation of the portfolio
weights needs to be incorporated. We demonstrate the perfor-
mance of the algorithm through several numerical examples
and convergence analyzes, benchmarking the results to the
established least-square Monte Carlo method (Longstaff and
Schwartz 2001).

The outline of the article is as follows. In section 2, we
define the modeling landscape, the considered interest rate

derivatives and the risk metrics of interest. In section 3,
we present the regression algorithm and show how we
can achieve a static replication for Bermudan swaptions. In
section 4, we derive the estimators used for price and sen-
sitivity calculation along the Monte Carlo path. Section 5
is subject to several representative numerical examples. We
conclude with a summary of the results in section 6.

2. Problem formulation

A problem overview is provided in figures 1–4.

2.1. Problem overview

(1) Initial Margin (IM) is a form of collateral, which
serves as a protection against the 99% value-at-risk of
the exposure change during the margin period of risk
(figure 1).

(2) The industry standard approach to IM quantification
is the Standard Initial Margin Model (SIMM), which
takes the portfolio sensitivities as input (figure 2).

(3) The expected funding cost of posting IM is called
Margin Value Adjustment (MVA). Quantifying MVA
requires the simulation of future IM (i.e. portfolio

Figure 1. Definition initial margin (IM).

Figure 2. Standard initial margin model (SIMM).
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Figure 3. Definition margin value adjustment (MVA).

Figure 4. MVA through static replication.

sensitivities), which is a computational challenge
(figure 3).

(4) We propose a method to statically replicate a callable
derivative with a portfolio of vanilla options. This sim-
plifies the computation of path-wise sensitivities and
future IM (figure 4).

2.2. Model and assumptions

First, we fix a finite time-horizon [0, T̄], on which we consider
a continuous-time financial market. We assume the market is
frictionless and free of arbitrage. We let the probability space
(�,F , P) represent all possible states of the economy and
the filtration F = (Ft)t∈[0,T̄] all information generated by the
economy up to time-t.

We consider the notion of a bank account or money mar-
ket account. Investments in the money market are assumed to
compound a continuous, risk-free interest rt. We refer to rt as
the short-rate. The time-t value of a unit of currency invested
in the money market at time-zero is denoted as Mt, and we
assume it satisfies the following dynamics

dMt = rtMt dt, M0 = 1

We denote by Q the risk-neutral measure equivalent to P,
which is associated with Mt as the numéraire. Attainable
claims denominated by the numéraire are assumed to be mar-
tingales under Q, which guarantees the absence of arbitrage
(Harrison and Pliska 1981).

Throughout this paper we shall consider short-rate dynam-
ics that are captured by an affine term-structure model, as



A static replication approach for callable interest rate derivatives 413

introduced in Duffie and Kan (1996). That means that the
short-rate can be written as

rt = g (xt)

for some function g : Rd → R. The vector xt := {x1(t), . . . ,
xd(t)} denotes a Markovian system of state-variables in Rd .
The state-variables are assumed to satisfy an SDE of the form

dxt = μ (t, xt) dt + η(t) dWt (1)

with Wt := {W1(t), . . . , Wd(t)} denoting a d-dimensional
Brownian motion under Q and functions μ : [0, T̄]× Rd →
Rd and η : [0, T̄]→ Rd×d . We let g(·) and μ(t, ·) be affine
functions of xt, satisfying the standard regularity conditions,
such that xt admits a strong solution. Note that we restrict
our scope to the Gaussian subclass of affine short-rate mod-
els. This is done to impose an intuitive relationship between
model parameters and model-implied option volatilities (see
section 3.5). This will facilitate the tractability of the compu-
tations; the estimation of Vega in particular. Generalizations
to state-dependent diffusion coefficients should be possible
but will involve the differentiation of Fourier transforms. This
increases the complexity of the problem and falls outside the
scope of this paper.

A zero-coupon bond is a contract that guarantees the holder
one unit of currency at a pre-specified maturity date T. We
will denote its time-t value as P(t, T) for t ≤ T . An important
result for affine term-structure models, is that zero-coupon
bond prices are exponential affine in xt. See for example
Andersen and Piterbarg (2010) and Duffie and Kan (1996)
for details. Next to zero-coupon bonds, we will often refer
to a related quantity, known as the zero-rate. We define a
zero-rate as

R(t, T) := − log P(t, T)

τ

where τ denotes the year fraction between date t and T. For
simplicity, we will assume that the collateral rate used for dis-
counting and the instantaneous rate used to derive term-rates
are both implied by the same short-rate rt. In other words,
our set-up will be a classic single-curve model environ-
ment. As term rates, we consider the classic, forward-looking
LIBOR. Similarly one could consider a backward-looking,
RFR-based term rate. In certain markets, the IBOR bench-
mark is discontinued, in favor of such set-in-arrears term
rates (see Lyashenko and Mercurio 2019). As forward rates
of forward- and backward-looking term rates are equivalent
before the start of the accrual period, their treatment within
this framework would mostly be the same.

2.3. Interest rate derivatives

The focus of this work will be on modeling Bermudan
swaptions. Here we briefly introduce related derivatives and
notation.

Interest rate swap: We consider fixed-for-floating
interest rate swaps, where floating LIBOR payments
are exchanged against fixed rate payments on dates
T0, . . . , TM . The year-fraction between Tj−1 and Tj will
be denoted τj.

European swaption: A European swaption is a con-
tract, which gives the holder the right, but not the obli-
gation to enter an fixed-for-floating interest rate swap
with pre-specified fixed rate K at a pre-specified future
inception date T0. Considering the annuity A0,M (t) :=∑M

m=1 τmP(t, Tm) as numéraire, the risk-neutral value
of a swaption (see Filipovic 2009) can be expressed as

Vt = A0,M (t)E
0,M
[(
δ
(
S0,M (T0)− K

) )+ ∣∣∣Ft

]
(2)

where the expectation above is taken under the annu-
ity measure Q0,M . The parameter δ distinguishes
between a payer (δ = 1) and a receiver (δ = −1)
swaption. Under the assumption that the swap rate
has Gaussian dynamics, the swaption price can eval-
uated using Bachelier’s formula (see Musiela and
Rutkowski 1997). Given a swaption has market price
Vmkt(t, K), the implied normal volatility is defined as
the unique scalar σimp that solves the equation

VBach
(
t, σimp, K

) = Vmkt(t, K)

Bermudan swaption: A Bermudan swaption is a con-
tract, which gives the holder the right to enter a
fixed-for-floating interest rate swap with maturity TM

at any of the dates T0, . . . , TM−1 at a pre-specified fixed
rate K. Should the holder of the Bermudan choose to
exercise at Tm, the payoff is given by

h
(
Tm, xTm

)
:= hm

(
xTm

)
= δAm,M

(
Tm; xTm

) [
Sm,M (Tm; xTm)− K

]
The value of a Bermudan swaption can be repre-
sented through a dynamic programming formulation,
in which the price is captured by means of a backward
recursion (Glasserman 2004), given by

V (t; xt)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max {hM−1(xt), 0} if t = TM−1

max {hm(xt), Cm(t, xt)} if t = Tm,

m = 0, . . . , M − 2

Cm−1(t, xt) if t ∈ (Tm−1, Tm)

where Cm represents the continuation value of the
contract.

2.4. Credit risk metrics

In this work, we will consider credit exposure and for-
ward sensitivity profiles of Bermudan swaptions. Exposure
is essential for CVA computation. Product sensitivities, Delta
and Vega in particular, serve as an input to ISDA SIMM
calculations for initial margin.

2.4.1. Exposure and CVA. The expected positive exposure
(EPE) of a financial contract with price Vt at time t ≥ 0 is

EPE(t) := EQ
[
e−

∫ t
0 ru du max {Vt, 0}

∣∣∣F0

]
Expected positive exposure represents the expected loss on a
claim in the event of a counterparty defaulting at a given time
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t ≥ 0 (Gregory 2020). The expectation is evaluated under
the risk-neutral measure Q. Exposure is a key ingredient
in the quantification of counterparty risk at trade or coun-
terparty level through CVA. CVA is the difference between
the total value of a derivative in a market that is completed
with counterparty risk and its default-free value (Burgard and
Kjaer 2013). Let τ ≥ 0 denote the default time of the counter-
party. Assuming τ is independent of exposure (i.e. ignoring
wrong- or right-way risk), CVA can be computed as follows
Green (2015)

CVA = (1− RR)
∫ T

0
EPE(u) dQ(τ = u)

≈ LGD
n∑

i=1

EPE(ti)× PD(ti−1, ti) (3)

with RR denoting the recovery rate, LGD the loss given
default and PD the probability of default of the counter-
party. A common approach in the literature is to model
the default time τ as an Ft−adapted stopping time using a
Cox-construction (Jeanblanc and Li 2020). In that case, the
survival function of the counterparty follows an exponential
distribution, i.e. Q(τ > t) = exp{−�(t)} with �(t) denoting
a hazard function. The hazard function can be specified in
terms of a hazard rate λ(t), which yields �(t) = ∫ t

0 λ(u) du.
Therefore, the probability of default can be written as

PD(ti−1, ti) = e−
∫ ti−1

0 λ(u) du − e−
∫ ti

0 λ(u) du (4)

2.4.2. Initial margin and MVA. An important means to
reduce the exposure at risk is the exchange of collateral. In
this work, we will consider initial margin (IM) and its related
funding costs. IM is a protection against exposure changes
during the margin period of risk, the time interval after a
default when outstanding positions are not yet settled, but
VM is no longer updated (Green and Kenyon 2015). Typi-
cally, IM reflects the 99% value-at-risk of the portfolio change
over a 10-day time interval. Throughout this work, we will
consider the Standard Initial Margin Model (SIMM) to be
the default method for IM computations. The main take-away
from SIMM–IM is that it is a sensitivity-based approach. The
idea is that the response of an instrument to a risk-factor shock
is efficiently approximated by multiplying the instrument’s
risk-factor sensitivity by the corresponding shock size (Inter-
national Swaps and Derivatives Association, Inc 2016). We
will provide a brief summary of SIMM below, but refer to
International Swaps and Derivatives Association, Inc (2020)
for details.

Consider risk-factors θ := (θ1, . . . , θK)
� and denote the 10-

day risk-factor increments as 
θ1, . . . ,
θK . The variance of
the total response of an instrument Vt to each shock 
θi is
computed as

Var

(
K∑

i=1

∂Vt

∂θi

θi

)
= [DθVt]

��θ [DθVt]

where DθVt denotes the gradient of Vt w.r.t. θ and �θ denotes
the covariance matrix of θ . If the total response defined above,

is assumed to be approximately Gaussian with mean zero, the
VaR can be estimated as follows

VaR0.99(
Vt) ≈ −1(0.99)
√

[DθVt]
��θ [DθVt]

Where −1 denotes the inverse of the standard normal
CDF. For interest rate derivatives, ISDA distinguishes three
relevant types of risk-factors, namely Delta-risk, Vega-risk
and Curvature-risk, the latter referring to the second-order
Gamma impact. The total IM is given by

IM := MarginDelta +MarginVega +MarginCurvature (5)

where each component represents a VaR estimation w.r.t. a
type of underlying risk-factors, i.e. market interest rates and
market implied volatilities. The risk-factors of each type are
subdivided into twelve buckets, corresponding to the yields
at the tenors T := {2W , 1M , 3M , 6M , 1Y , 2Y , 3Y , 5Y , 10Y ,
15Y , 20Y , 30Y }. Hence for each component one needs to
compute the corresponding 12-dimensional sensitivity vec-
tor, which are specified as (see also International Swaps and
Derivatives Association, Inc 2020):

Delta : The PV01 of the instrument Vt w.r.t. the risk-
free interest rate Rk at tenor τk ∈ T , i.e. 
k =
Vt(Rk + 1bp)− Vt(Rk).

Vega : The sensitivity of the instrument Vt w.r.t.
volatility risk-factor σk , i.e. Vk = Vt(σk +
1%)− Vt(σk). Here, σk denotes the the implied
at-the-money volatility of a swaption with an
expiry time equal to τk ∈ T .

Curvature : Curvature margin represents the second-order
impact of the interest rate risk-factors to the
VaR estimate. In SIMM, the Gamma is approxi-
mated with a Vega-Gamma relationship. There-
fore, the computation of Curvature margin
takes the Vega sensitivity vector as input, simi-
lar to Vega margin.

For SIMM–IM quantification in practice, the user only needs
to compute the portfolio sensitivities. The other parameters
are provided by ISDA in an annual publication.

A key difference between VM and IM is that the former is
symmetric. VM reflects the value of the underlying trade and
can be rehypothecated. This means the receiver can reuse the
collateral, for example in the margin agreement of an oppo-
site transaction. In contrast, IM reflects the risk of a trade
and must be exchanged in both directions, without netting
the amounts. The collateral is often required to be posted on
a segregated account and therefore cannot be rehypothecated
(Gregory 2020). As a result, IM must be funded by the dealer,
which comes at a cost. The expected lifetime cost of post-
ing IM against a portfolio is called Margin Value Adjustment
(MVA) (Green and Kenyon 2015).

The size of MVA is driven by the dynamic IM profile of
the portfolio and the funding spread that applies to the IM
posting. As the volume of IM is dependent on the state of the
economy, {IM(t) : t ∈ [0, T]} represents a stochastic process.
The expected initial margin (EIM) of a financial contract at
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time t ≥ 0 is defined as

EIM(t) := EQ
[
e−

∫ t
0 ru duIM(t)

∣∣∣F0

]
EIM represents the expected volume of IM that needs to be
posted by the dealer at a given time t ≥ 0 (Gregory 2020).
With this expression at hand, MVA can be computed as
follows

MVA =
∫ T

0
FS(u)EIM(u) du

≈
n∑

i=1

FS(ti)× EIM(ti)× (ti − ti−1) (6)

with FS denoting the funding spread, which reflects the spread
on the collateral rate w.r.t. the risk-free rate (Green and
Kenyon 2015).

3. The static replication method

In this section, we describe the algorithm that is used to
compose a static replication portfolio for a Bermudan swap-
tion. The algorithm is embedded in a Monte Carlo framework
and relies on a regress-later technique. See Glasserman and
Yu (2004) for a general introduction to regress-later. The
method is strongly inspired by the work of Jain and Oost-
erlee (2015) and extends the approach that is presented in
Lokeshwar et al. (2022) and Hoencamp et al. (2023).

In Jain and Oosterlee (2015), it is shown that early-exercise
options can be priced with an application of a regress-later
technique. As such, the ‘later’ option price VTm+1 is regressed
against the ‘later’ risk-factor realization xTm+1 . The contin-
uation value is subsequently estimated by evaluating the
conditional expectation of the regressed option value, i.e.

Cm(Tm) = MTmEQ

[
VTm+1

MTm+1

∣∣∣∣FTm

]

≈ MTmEQ

[∑K
k=1 αkφk

(
xTm+1

)
MTm+1

∣∣∣∣FTm

]

which can be computed in (semi) closed-form for an appro-
priate choice of basis-functions φk .

In Lokeshwar et al. (2022), it is proposed to perform the
regression with a shallow neural network (i.e. a feed-forward
neural network with a single hidden layer). By considering
the appropriate network structure, it is shown that the regres-
sion can be interpreted as a portfolio of short-maturity options.
As a consequence, the continuation value can be evaluated
by simply pricing the replication instruments. In Hoencamp
et al. (2023), this approach is extended to an interest rate mod-
eling framework. There it is shown that a Bermudan swaption
can be semi-statically replicated by an options portfolio writ-
ten on zero-coupon bonds. The central concept of the latter
two studies is that if a portfolio perfectly reproduces the
value function of a derivative security at some future time Tj

for every realization of the state-variables, the no-arbitrage

condition implies that this portfolio will also replicate the
security at any time t < Tj, as long as no cash-flows can
occur between t and Tj. Where a dynamic replicating portfolio
needs to be rebalanced continuously through time, the semi-
static replication only needs rebalancing on a finite number of
instances.

The algorithm that is proposed in this paper builds
further on the foundations that were laid by Jain and
Oosterlee (2015), Lokeshwar et al. (2022) and Hoencamp
et al. (2023). We suggest two main novelties compared to the
earlier studies

• We propose to use the swap rate as the regres-
sion variable, which is an implicit risk-factor in
our model set-up. As a consequence, the regression
can be interpreted as the payoff of a portfolio of
European swaptions. We further elaborate on this
in Section 3.4.

• We propose a new variation to the algorithm, which
allows us to compose a replication that is not semi-
static, but in fact truly static. In other words, this
algorithm lets one compose a portfolio at time zero,
which will mirror the value of the Bermudan until
it is either exercised or expired, without the need of
updating the portfolio at intermediate time-points.
We further elaborate on this in Section 3.3.

3.1. The algorithm

The algorithm is executed in an iterative manner, moving
backwards in time. Starting at the final exercise date TM−1,
a regression is performed to determine the weights and strikes
of an options portfolio which replicates the Bermudan’s pay-
off. This replication is subsequently used to estimate the value
of the Bermudan at the preceding monitor date, yielding the
target function of the consecutive regression. This process is
repeated until the first monitor date T0 and a portfolio has been
composed which statically replicates the Bermudan between
time-zero and its final exercise date. Below we will describe
the algorithm in more detail.

Start by sampling N trajectories of the underlying state-
variable. For each realization of xTM−1 , compute the Bermu-
dan swaption payoff at TM−1 (the final exercise opportunity)
fM−1(xTM−1) = max{hM−1(xTM−1), 0}. This will act as the tar-
get function of the first regression. Now recursively execute
the following steps for m = M − 1, . . . , 0:

1. Select and sample the regression variable

Select an asset zm(t) = {zm,1(t, xt), . . . , zm,d(t, xt)} taking value
in Rd that will act as the independent regression variable. For
compactness, we will suppress the dependency of zm on the
state variable xt, when clear from the context. The asset(s)
should satisfy the following conditions:

• zm(Tm) is a square integrable random variable on
the probability space (�,FTm , Q).

• For each m = 0, . . . , M − 1, the realization fm(xTm)

is uniquely determined by zm(Tm).
• The parametrization {(zm(Tm; x), fm(x)) : x ∈ Rd} is

continuous.
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where fm denotes a target function, which we define in (8)
below. Subsequently compute for each sample path the real-
izations of zm(Tm).

2. Regress the target function

Consider a regression function Gm : Rd → R that is defined
as

Gm = ψ2 ◦ A2 ◦ ψ1 ◦ A1 (7)

Here we denote by A1 : Rd → Rn, A2 : Rn → R affine func-
tions of the form

A1(y) 
→ w1y+ b1 and A2(y) 
→ w2y+ b2

with w1 ∈ Rd×n, w2 ∈ Rn×1, b1 ∈ Rn and b2 ∈ R. Further-
more we denote by ψ1 : Rn → Rn, ψ2 : R→ R activation
functions of the form

ψ1(y) 
→ (max {y1, 0} , . . . , max {yn, 0}) and ψ2(y) 
→ y

Additionally, consider a target function fm : Rd → R of the
form

fm(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qm(x) ·max {hm (x) , 0}
if m = M − 1

qm(x) ·max
{

hm (x)− C̃m (Tm, x) , 0
}

if m = M − 2, . . . , 0

(8)

where qm(x) denotes a possible scaling factor. The ratio-
nale behind this target function is that we aim to regress the
fraction of the option value that is lost, when an exercise
date passes, but the option is not exercised. We provide an
elaborate motivation and interpretation in section 3.3.

Subsequently, optimize the parameters βm = {w1, w2, b1,
b2}, such that Gm(zm(Tm);βm) fits the target function fm(xTm).
The parameters are determined by minimizing the cost func-
tion

Lm(β) = EQ

[(
Gm
(
zm (Tm) ;β

)− fm
(
xTm

) )2
]

(9)

≈ 1

N

N∑
n=1

(
Gm
(
zm(n);β

)− fm
(
xTm(n)

) )2
(10)

where zm(n) and xTm(n) denote sampled realizations of the
asset and the state variable, respectively, on a corresponding
MC path.

3. Estimate the continuation value
Finally, the continuation value of the Bermudan swaption at
the preceding exercise date Tm−1 is estimated by calculating

C̃m−1
(
Tm−1, xTm−1

) = M−1∑
j=m

MTm−1E
Q

[
Gj
(
zj
(
Tj
)

;βj
)

MTj · qj
(
xTj

) ∣∣∣∣xTm−1

]

(11)

With an appropriate choice of zm, this can be computed
in closed-form or approximated with an efficient numerical
routine.

3.2. Interpretation of the regression function

The regression function as presented in (7) can be considered
a shallow neural network, i.e. a feed-forward neural network
with a single hidden layer. The structure is graphically repre-
sented in figure 5(a). The outcome of the first hidden layer is a
vector in Rn, consisting of n neurons. Each individual neuron
Om,i is calculated as

Om,i = max

⎧⎨
⎩

d∑
j=1

wijzm,i (Tm)+ bi, 0

⎫⎬
⎭

The functional form of each hidden node thus corresponds
to the payoff of an arithmetic basket option written on
zm,1, . . . , zm,d .

The outcome of the second layer is calculated as

n∑
i=1

wiOm,i + b

The functional form of the outcome of the neural network,
hence corresponds to the payoff of a weighted portfolio of
basket options, plus a zero-coupon bond maturing at Tm.
Computing the conditional expectation given in (11) can
be interpreted as evaluating the risk-neutral price of this
portfolio.

Figure 5. Neural network structures. (a) Fully connected. (b) One-dimensional and (c) Locally connected.
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Figure 6. Target functions regress-later: two approaches. (a) Fully static replication and (b) Semi-static replication.

3.3. A static replication

Let �m(t) denote an options portfolio maturing at Tm with
payoff equal to

�m (Tm) = 1

qm(xTm)
Gm (zm (Tm) ;βm) (12)

By the deliberate choice of the target function fm in (8), the
payoff of this portfolio yields the approximation

�m (Tm) ≈ max
{

hm
(
xTm

)− C̃m
(
Tm, xTm

)
, 0
}

= max
{

hm
(
xTm

)
, C̃m

(
Tm, xTm

)}− C̃m
(
Tm, xTm

)
which is graphically represented by the red area in figure 6(a).
As a consequence of the no-arbitrage condition, it follows that
at any time t < Tm the risk-neutral portfolio value yields the
approximation�m(t) ≈ Cm−1(t, xt)− Cm(t, xt). By a repeated
argument, whenever t ∈ (Tm−1, Tm) we have

M−1∑
i=m

�i(t) ≈ Cm−1(t, xt) = V (t)

The combined portfolio �(t) :=∑M−1
i=0 �i(t), composed at

t = 0, can be interpreted as a fully static replication of the
Bermudan swaption. Whenever a monitor date Tm is reached,
subportfolio �m expires. Then, two things could happen:

• C(Tm, xTm) ≤ hm(xTm) : The holder exercises the
Bermudan and the value of

∑M−1
i=m+1�i plus the

payoff of �m will equal the exercise value.
• C(Tm, xTm) > hm(xTm) : The holder holds the

Bermudan, subportfolio �m expires worthless and∑M−1
i=m+1�i will continue to replicate the Bermudan.

Thus, portfolio�will mirror the Bermudan swaption value
until it is either matured or exercised.

The algorithm presented in this work is a variation to
the semi-static replication approach presented in Lokeshwar
et al. (2022) and Hoencamp et al. (2023). There, the target
function fm is selected such that the portfolio payoff�m yields
the approximation

�m (Tm) ≈ max
{

hm
(
xTm

)
, C̃m

(
Tm, xTm

)}

which is graphically represented by the red area in figure 6(b).
In that case, subportfolio �m is set-up on Tm−1, it replicates
the Bermudan on the time-interval (Tm−1, Tm) and expires at
Tm. Its payoff will equal the exercise value of the Bermudan,
or suffice to set-up subportfolio �m+1 in case the Bermudan
is continued. The advantage of the latter approach is that only
�m(t) needs to be priced in order to value the Bermudan,
rather than

∑M−1
i=m �i(t). A disadvantage is that the replica-

tion is only semi-static and needs rebalancing on each monitor
date Tm.

3.4. Estimation of the continuation value

How the continuation value as given in (11) is computed,
depends on the specification of the model and the selection of
the regression asset. In the general case, the portfolio �m can
be interpreted as a portfolio of arithmetic basket options. The
valuation of a basket option is typically still not an easy exer-
cise. However, with the appropriate constraints on the neural
network structure used for the regression, the replicating port-
folio can be reduced to a set of European options. A first
approach would be to consider a one-dimensional regression
asset, which corresponds to the design depicted in figure 5(b).
This would be appropriate under a one-factor model. A sec-
ond approach would be to constrain matrix A1 to have only
one non-zero entry in each row. This corresponds to the neu-
ral network design depicted in figure 5(c). In the numerical
examples included in this work, we will be considering a
1-factor model environment. Generalizations to multi-factor
models have been described in Hoencamp et al. (2023). We
will consider the following assumptions:

• Regression asset: select zm(t) = Sm,M (t).
• Scaling factor: set qm(xt) = 1

Am,M (t,xt)
.

Under the assumptions stated above, the (sub)portfolio
�m as defined in (12), can be interpreted as a portfolio of
European swaptions, written on the swap rate Sm,M (t).† The

† For simplicity we will ignore the zero-coupon bond in the repli-
cating portfolio (see section 3.2). This is achieved by constraining
b2 = 0. Our numerical experiments indicate a minimal impact on
the accuracy of the replication.
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valuation of �m(t) for some t < Tm comes down to

�m(t)

= MtE
Q

[
Gm
(
zm (Tm) ;βj

)
MTm · qm

(
xTm

) ∣∣∣∣xt

]

= MtE
Q

⎡
⎢⎢⎣Am,M (Tm)

n∑
i=1

w2,i max
{
w1,iSm,M (Tm)+ bi, 0

}
MTj

∣∣∣∣xt

⎤
⎥⎥⎦

=
n∑

i=1

w2,iAm,M (t)E
m,M

[
max

{
w1,iSm,M (Tm)+ bi, 0

} ∣∣∣xt

]

where the expectation in the last line is taken under the annu-
ity measure Qm,M associated to the numéraire Am,M (t). The
expression above should be recognized as a linear combi-
nation of European swaption prices (see equation (2)). The
parameter w1,i distinguishes between a payer (w1,i > 0) and
receiver (w1,i < 0) swaption. The parameter w2,i distinguishes
between a long (w2,i > 0) and a short (w2,i < 0) position in
the swaption contract.

3.5. Valuation of the replicating portfolio

Under the assumptions of section 3.4, portfolio�m consists of
European swaptions, which means the valuation comes down
to pricing each individual option. We apply a coefficient freez-
ing technique, described in Andersen and Piterbarg (2010)
and Schrager and Pelsser (2006). With this technique, the
swap rate process is approximated as a generalized arithmetic
Brownian motion, by freezing the stochastic terms in its diffu-
sion. The option’s implied volatility can then be approximated
by integrating the ‘frozen’ diffusion coefficient. We briefly
summarize the method below, and refer to Andersen and
Piterbarg (2010) and Schrager and Pelsser (2006) for details.

Consider the dynamics of the swap rate. By Itô’s lemma, it
can be established that Sm,M satisfies the SDE

dSm,M (t) = (. . .) dt + [DxSm,M (t)
]�
η (t) · dWt

Considering the annuity as numéraire, the swap rate can
regarded as the quotient of some tradable assets and the
numéraire itself. As a consequence, the swap rate is a Mar-
tingale under the annuity measure Qm,M (Jamshidian 1997).
Hence, for 0 ≤ t ≤ T ≤ Tm we can write

Sm,M (T) = Sm,M (t)+
∫ T

t
�m,M (u)

�η(u) · dW m,M
u (13)

where W m,M denotes a d-dimensional Qm,M Brownian motion
and �m,M (t) := [DxSm,M (t)]�. Working out the diffusion for
i = 1, . . . , d yields

�m,M (t) = B(t, TM )
P(t, TM )

Am,M (t)
− B(t, Tm)

P(t, Tm)

Am,M (t)

− Sm,M (t)
M∑

l=m+1

τlB(t, Tl)
P(t, Tl)

Am,M (t)
(14)

The diffusion coefficient is stochastic, due to the P(t,Ti)

Am,M (t)
terms.

However, these terms again represent the quotient of a trad-
able asset and the numéraire. It is conjectured in Schrager
and Pelsser (2006), that these terms are Martingales with
low quadratic variation. A good approximation is therefore
achieved by freezing them at their time-t value, resulting in
a deterministic diffusion coefficient �̃m,M (u) for u ∈ [t, T]. It
follows

Sm,M (T) ≈ S̃m,M (T) := Sm,M (t)+
∫ T

t
�̃m,M (u)

�η(u) · dW m,M
u

(15)

The approximation S̃m,M (T) conditioned on Ft is normally
distributed. Applying Itô isometry allows us to approximate
the implied volatility of an option written on Sm,M , which
yields

σ̃imp(t, T)

=
√√√√ 1

T − t
Em,M

[∥∥∥∥
∫ T

t
�̃m,M (u)�η(u) · dW m,M

u

∥∥∥∥
2

2

∣∣∣∣xt

]

(16)

=
√

1

T − t

∫ T

t
‖�̃m,M (u)�η(u)‖2

2 du (17)

Substituting σ̃imp(t, T) into Bachelier’s formula results is the
desired swaption price.

4. Numerical algorithms and mathematical consistency

In this section, we describe the numerical routines for comput-
ing sensitivities along the Monte Carlo path. In short, we show
how to compute the sensitivities of the replicating portfolio
in a time-consistent manner. This involves the differentiation
of the replicating instrument values (i.e. greeking) and the
differentiation of the portfolio weights.

Our approach to the latter is inspired by the work of Jain
et al. (2019). In Jain et al. (2019) a regress-later approach
is considered, which utilizes ordinary least-square regres-
sion. As such, the weights of the basis-functions can be
obtained explicitly as a function of the risk-factor and con-
sistently differentiated. In this paper, only an implicit relation
between the risk-factors and the portfolio weights is known
through the minimized cost function (equation (10)). Yet, we
show that an estimator of the weight sensitivities can still
be obtained through an application of the implicit function
theorem.

An advantage of our approach is that it should be eas-
ier to evaluate sensitivities to implicit risk-factors, which
are not directly modeled. In the context of MVA this con-
cerns the sensitivities to the realizations of future market
rates and future implied volatilities. With regard to static
replication, the replicating portfolio is selected such that
the required future Delta and Vega are tractable to com-
pute. In contrast, with, for example, an application of AD
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on LSM, this may not be straight-forward. It would require
the computation pseudo Jacobian-inverses or adding plenty
pseudo-interpolation-nodes to the term-structure of zero-rates
and instantaneous volatilities, which may be a tedious task.

4.1. Notation and assumtions

Let t ∈ [0, T̄) and let Vt denote the time-t risk-neutral value
of a Bermudan swaption with strike K and tenor structure
T0, T1, . . . TM , conditioned on the event that the option is not
yet exercised at t. Next to the Bermudan swaption, we con-
sider a static replicating portfolio � consisting of European
swaptions. We write

�(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

M−1∑
i=0

�i(t) if 0 ≤ t ≤ T0

M−1∑
i=m

�i(t) if Tm−1 < t ≤ Tm

0 if TM−1 < t

where �m denotes a subportfolio of swaptions, written on the
swap rate Sm,M . The subportfolios are defined as

�m(t) := w�mπm (t) =
n∑

i=1

wm,iπm,i(t)

πm,i(t) = Am,M (t)E
m,M

[(
δm,i

(
Sm,M (Tm)− Km,i

) )+ ∣∣∣∣xt

]

Where we denote πm(t) := (πm,1(t), . . . ,πm,n(t))�, wm :=
(wm,1, . . . , wm,n)

� and km := (Km,1, . . . , Km,n)
�

To keep computations feasible, we will consider two
assumptions:

• The time-zero zero-rate curve τ 
→ R(0, τ) is
assumed to be an interpolation between nodes
{R0, R1, . . . , RK}, with Rk := R(0, τk). The nodes
are assumed to be the result of a calibration boot-
strap against market rates, such as swap- or deposit
rates.

• The instantaneous volatility η(t) is assumed to be
piece-wise constant between dates {τ0, τ1, . . . , τK}.
The volatility level ηk between τk−1 and τk , is
assumed to be the result of a bootstrap against mar-
ket implied volatilities σk of European swaptions
with maturity τk .

4.2. Sensitivities along the monte carlo path

In this work, we focus on two types of sensitivities, namely
Delta and Vega. The time-zero sensitivities are specified as
follows: Let 
 := (
0,
1, . . . ,
K), where 
k denotes the
sensitivity of V0 to an infinitesimal bump of the zero-rate node
Rk . It is defined as


k := lim
ε→0

V0 (Rk + ε)− V0 (Rk)

ε

The impact of a bump in a zero-rate node, while keeping other
nodes fixed, is graphically represented in figure 7(a).Let V :=
(V0,V1, . . . ,VK), where Vk denotes the sensitivity of V0 to an
infinitesimal bump of implied volatility σk corresponding to
the swaption with maturity τk . It is defined as

Vk := lim
ε→0

V0 (σk + ε)− V0 (σk)

ε

Figure 7. Impact of bumping the market rates (left) and implied volatilities (right) at t-zero (top) and a future simulation date (bottom). All
bumps correspond to bucket τk = 10. (a) Zero-rate bump at t = 0. (b) Instant. volatility bump t = 0. (c) Zero-rate bump at t = 7 and (d)
Instant. volatility bump at t = 7.
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A bump in σk , while keeping other implied volatilities fixed
will impact the level of ηk and ηk+1. This impact is graphically
represented in figure 7(b).

The sensitivities along the Monte Carlo path are understood
as future-time generalizations of the quantities defined above.
That is, future Delta 
k(t) is interpreted as the sensitivity of
Vt to an infinitesimal bump of the hypothetical zero-rate node
Rk(t) := R(t, t + τk), conditional on Ft. This is graphically
represented in figure 7(c). Future Vega Vk(t) is interpreted
as the sensitivity of Vt to an infinitesimal bump of the time-t
implied volatility σk(t) := σimp(t, t + τk) corresponding to an
ATM swaption maturing at t + τk , conditional on Ft. This is
graphically represented in figure 7(d).

4.3. Computing the sensitivity

First we consider the general case and denote

θ t := (θ1(t), θ2(t), . . . , θK(t)
)�

where either θk(t) := Rk(t) or θk(t) := σk(t). Later on we will
distinguish between the two cases. Without loss of generality,
assume that t ∈ (Tm−1, Tm]. The aim is to compute

Dθ�(t)
∣∣
θ=θ t
=

M−1∑
i=m

Dθ�i(t)
∣∣
θ=θ t

We iteratively compute the sensitivities of each subportfolio,
for i = M − 1, . . . , m. Starting with i = M −1, a static repli-
cation of VTM−1 is achieved with a single European swaption,
i.e.�M−1 := πM−1,1. Thus, setting wM−1,1 = 1 and KM−1,1 =
K. The Delta and Vega simply correspond to the sensitivities
of a European swaption, i.e.

Dθ�M−1(t) =
(
∂πM−1(t)

∂θ1
, . . . ,

∂πM−1(t)

∂θK

)

Next, consider the case i = m<M −1 and assume the sensi-
tivities Dθ�m+1(t), . . . , Dθ�M−1(t) are known. With slight
abuse of notation, we have according to the chain rule the
following relation

Dθ�m(t) = ∂�m(t)

∂θ︸ ︷︷ ︸
options

Delta/Vega

+ ∂�m(t)

∂wm

∂wm

∂θ︸ ︷︷ ︸
weight

sensitivities

+ ∂�m(t)

∂km

∂km

∂θ︸ ︷︷ ︸
strike

sensitivities

(18)

We detail each term below:

Options Delta The first term represents the stan-
dard Delta or Vega of the options
composing the portfolio, i.e.

∂�m(t)

∂θ
= w�mDθπm(t) (19)

Weight sensitivities The weights wm are optimized, such
that the portfolio payoff matches a
target function (equation (8)). This
target function is sensitive to param-
eter changes in the zero-rate curve

or volatility term-structure. As a con-
sequence we need to consider the
weight sensitivities, i.e.

∂�m(t)

∂wm

∂wm

∂θ
= π�m(t)Dθwm (20)

Strike sensitivities For the same reason as for the
weights, the sensitivities for the
strikes should be considered. How-
ever, we conjecture the impact of the
strike sensitivities is relatively small,
which is supported by our numerical
experiments. We will ignore this term
for the remainder of this work.

A further derivation of the Delta/Vega sensitivities is the
subject of sections 4.4 and 4.5. A further derivation of the
weight sensitivities is subject of section 4.6.

4.4. The delta sensitivities

We start by working out the terms of the form Dθπm and con-
sider the case θk(t) = Rk(t) := R(t, t + τk). We perform the
derivation for the general setting 0 ≤ t ≤ T ≤ Tm and aim to
compute

Dθπm(T)
∣∣
θ=θ t
=

⎛
⎜⎜⎝
∂πm,1(T)
∂R1(t)

. . .
∂πm,1(T)
∂RK (t)

...
. . .

...
∂πm,n(T)
∂R1(t)

. . .
∂πm,n(T)
∂RK (t)

⎞
⎟⎟⎠

The Dθπm in (19) corresponds to the case t = T. The case
t<T will serve as a path-wise sensitivity estimator, which
will be required to compute the weight sensitivities in the
subsequent section.

We first characterize the forward Delta sensitivity of a zero-
coupon bond in the following lemma.

Lemma 4.1 Let 0 ≤ t ≤ T0 ≤ T1 and assume that the zero-
rate curve τ 
→ R(t, t + τ) is an interpolation between nodes
{R0(t), . . . , RK(t)}, where Rk(t) := R(t, t + τk). Then the for-
ward Delta sensitivity is given by

∂P(T0, T1)

∂Rk(t)
= αk(τ0, τ1)P(T0, T1)

where τi = Ti − t and αk denotes an Ft-measurable coeffi-
cient, dependent on the interpolation scheme of the zero-rate
nodes. If the interpolation is linear, the coefficient is given by

αk(τ0, τ1) := α′k(τ1)− α′k(τ0),

α′k(τ ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ − τk−1

τk − τk−1
τ if τ ∈ (τk−1, τk]

τk+1 − τ
τk+1 − τk

τ if τ ∈ (τk , τk+1]

0 otherwise

A proof to this lemma is given in appendix 1. Now, for
brevity denote Hm,i(t) := Em,M [(δm,i(Sm,M (Tm)− Km,i))

+|Ft].
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Then by an application of the chain rule and the product rule,
we can write

∂πm,i(T)

∂Rk(t)
= Am,M (T)

∂Hm,i(T)

∂Sm,M (T)︸ ︷︷ ︸
Bachelier

Delta

∂Sm,M (T)

∂Rk(t)︸ ︷︷ ︸
Swaprate
sensitivity

+ Hm,i(T)
∂Am,M (T)

∂Rk(t)︸ ︷︷ ︸
Annuity

sensitivity

(21)

Working out each of the three partial derivatives above, we
find

Bachelier Delta Under the swap rate dynamics
approximation given in (15), this
term is computed as the standard
Bachelier Delta sensitivity, i.e.

∂Hm,i(T)

∂Sm,M (T)
= δm,i(δm,id),

d = Sm,M (T)− Km,i

σimp(T , Tm)
√

Tm − T
(22)

Annuity sensitivity From Lemma 4.1 it directly follows

∂Am,M (T)

∂Rk(t)
=

M∑
j=m+1

τjαk(T − t, Tj − t)P(T , Tj)

Swap rate sensitivity Applying the chain rule and Lemma 4.1,
it follows

∂Sm,M (T)

∂Rk(t)

=
αk(T − t, Tm − t)P(T , Tm)− αk(T − t, Tm − t)

×P(T , TM )

Am,M (T)

− Sm,M (T)

∑M
j=m+1 τjαk(T − t, Tj − t)P(T , Tj)

Am,M (T)

4.5. The vega sensitivities

Now consider the case θk(t) = σk(t) := σimp(t, t + τk). Just as
for Delta, we perform the derivation for the general setting
0 ≤ t ≤ T ≤ Tm and aim to compute

Dθπm(T)
∣∣
θ=θ t
=

⎛
⎜⎜⎝
∂πm,1(T)
∂σ1(t)

. . .
∂πm,1(T)
∂σK (t)

...
. . .

...
∂πm,n(T)
∂σ1(t)

. . .
∂πm,n(T)
∂σK (t)

⎞
⎟⎟⎠

Again, the Dθπm in (19) corresponds to the case t = T. The
case t<T will serve as a path-wise sensitivity estimator,
which will be required to compute the weight sensitivities in
the subsequent section.

We first characterize the forward implied volatility Vega in
the following two lemmas.

Lemma 4.2 Let Sm,M satisfy the Gaussian approximation

of (15) and denote σ̃ (t, T) :=
√

1
T−t

∫ T
t ‖��m,M (u)η(u)‖2

2 du
for 0 ≤ t ≤ T ≤ Tm. Then

∂σimp(T , Tm)

∂σk(t)

=
(Tm − t)σ̃ (t, Tm)

∂σ̃ (t,Tm)

∂σk(t)
− (T − t)σ̃ (t, T) ∂σ̃ (t,T)

∂σk(t)

(Tm − T)σimp(T , Tm)

A proof is given in appendix 2. The sensitivity of σ̃ (t, T)
w.r.t. σk(t) is an Ft-measurable random variable, which is
dependent on the calibration procedure of the instantaneous
volatility η(t). If η1, . . . , ηK are scalars obtained by a boot-
strap procedure, the sensitivities can be further characterized
by the following lemma.

Lemma 4.3 Let η(t) be scalar-valued and piece-wise con-
stant. Let�m,M be as in (14) and let�k denote the diffusion of
the swap rate underlying the option corresponding to σk(t) :=
σimp(t, t + τk). Then the forward implied volatility Vega is
given by

∂σ̃ (t, T)

∂σk(t)
= αk(T)

τkσk(t)

τ σ̃ (t, T)

where τ := T − t and αk denotes an Ft-measurable coeffi-
cient. If by approximation�m,M ≈ �k ≈ �k+1, the coefficient
is given by

αk(T) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫ T
Tk−1

�2
m,M (u) du∫ Tk

Tk−1
�2

k (u) du
if Tk−1 < T ≤ Tk∫ Tk+1

T �2
m,M (u) du∫ Tk+1

Tk
�2

k+1(u) du
if Tk < T ≤ Tk+1

0 otherwise

where we denote Tk := t + τk.

A proof is given in appendix 3. By an application of the
chain rule, we obtain

∂πm,i(T)

∂σk(t)
= ∂πm,i(T)

∂σimp(T , Tm)︸ ︷︷ ︸
Bachelier

Vega

∂σimp(T , Tm)

∂σk(t)︸ ︷︷ ︸
Imp.vol.

sensitivity

+ ∂πm,i(T)

∂Sm,M (T)︸ ︷︷ ︸
Bachelier

Delta

∂Sm,M (T)

∂σk(t)︸ ︷︷ ︸
Swaprate
sensitivity

(23)

Considering each of the partial derivatives above, we find
Bachelier Vega Under the swap rate approximation given
in (15), this term can be computed as the Bachelier Vega
sensitivity, i.e.

∂πm,i(T)

∂σimp(T , Tm)
= Am,M (T)

√
Tm − Tϕ(d),

d = Sm,M (T)− Km,i

σimp(T , Tm)
√

Tm − T
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Bachelier Delta Under the swap rate approximation given
in (15), this term can be computed as the Bachelier Delta
sensitivity. Hence, similar to (22), we have

∂πm,i(T)

∂Sm,M (T)
= δm,iAm,M (T)(δm,id),

d = Sm,M (T)− Km,i

σimp(T , Tm)
√

Tm − T
(24)

Imp. vol. sensitivity The forward implied volatility sensitiv-
ity is characterized in Lemma 4.2. Under the assumptions of
Lemma 4.3, the sensitivity can be approximated as

∂σimp(T , Tm)

∂σ̂k(t)
=
(
αk(Tm)− αk(T)

)
τkσk(t)

(Tm − T)σimp(T , Tm)

Swap rate sensitivity Under the swap rate approximation
given in (15), we can write

Sm,M (T) ∼ Sm,M (t)+ σ̃ (t, T)
(

W m,M
T −W m,M

t

)

where σ̃ (t, T) :=
√

1
T−t

∫ T
t ‖��m,M (u)η(u)‖2

2 du. It follows that
the forward swap rate sensitivity can be estimated as

∂Sm,M (T)

∂σk(t)
= Sm,M (T)− Sm,M (t)

σ̃ (t, T)

∂σ̃ (t, T)

∂σk(t)

Under the assumptions of Lemma 4.3, this can be further
approximated as

∂Sm,M (T)

∂σk(t)
= τkαk(T)

T − t

(
Sm,M (T)− Sm,M (t)

)

4.6. The weight sensitivities

The weights and strikes of �m are obtained through an opti-
mization scheme as described in section 3.1. The objective
function for this optimization can equivalently be expressed
as

Lm (w, k) = EQ
[(

w�πm (Tm)− gm (Tm)
)2
]

where we denoted gm(t) := fm(xt)

qm(xt)
. The parameters wm and km

are determined by

(wm, km) = arg minw,k

{
Lm (w, k)

∣∣∣w, k ∈ Rn
}

(25)

Assuming Lm attains a local minimum in (wm, km), it fol-
lows by the first order optimality condition that ∇Lm = 0. In
particular, we have

λm (wm) :=
(
∂Lm

∂w1
, . . . ,

∂Lm

∂wn

) ∣∣∣∣
w=wm

= 0

where we can compute

λm(w) = EQ
[
Dw
(
w�πm(Tm)− gm(Tm)

)2
]

= 2EQ
[(

w�πm(Tm)− gm(Tm)
)
πm(Tm)

]

In order to characterize the weight sensitivities, we first con-
sider the Jacobian of λm (i.e. the Hessian of Lm w.r.t. w).
The Jacobian can be obtained by again differentiating the
expression above, which yields

Dwλm = 2EQ
[
Dw
(
w�πm(Tm)− gm(Tm)

)
πm(Tm)

]
(26)

= 2EQ
[
πm(Tm)π

�
m(Tm)

]
(27)

Hence, note that Dwλm is specified by the auto-correlation
matrix of the random vector πm. In other words, it depends
on the cross-sectional co-variance matrix of the portfolio pay-
offs. With this expression at hand, we characterize the weight
sensitivities in the following proposition

Proposition 4.4 Consider a swaption portfolio �m written
on swap rate Sm,M and let its weights and strikes satisfy
equation (25). Furthermore assume that the strikes K1, . . . , Kn

are all distinct. Then the derivative of wm w.r.t. θ t is well-
defined and its Jacobian matrix at (wm, θ t) is given by

∂wm

∂θ t
= − (Dwλm)

−1 Dθλm

∣∣
w=wm,θ=θ t

(28)

This result is a consequence of the implicit function
theorem. A rigorous proof is given in appendix 4.

Remark 1 The first term in (28) is given by the inverse
of the matrix in (27). Note that this term is both path-
independent and time-independent. Hence, although its com-
putation requires numerical estimation and matrix inversion,
it can be used along each MC path, at each time-step without
nested re-evaluation.

What remains to be done is computing Dθλm. We therefore
compute

Dθλm = 2EQ
[
πmDθ

(
w�πm(Tm)− gm(Tm)

)]
+ 2EQ

[(
w�πm(Tm)− gm(Tm)

)
Dθπm(Tm)

]
Note that the second term is zero if subportfolio �m yields a
perfect fit to the target function gm. Therefore, we can expect
this term to be small and we will ignore it. Working out the
first term, we find

Dθλm ≈ 2EQ
[
πmw�Dθπm(Tm)

]− 2EQ [πmDθgm(Tm)]

In the first term of the expression above, Dθπm(Tm) repre-
sent the Deltas/Vegas of subportfolio �m. This term needs
to be numerically estimated. The path-wise estimator has
been derived in sections 4.4 and 4.5. The second term also
needs to be numerically estimated. The path-wise estimator
involves Dθgm(Tm), where gm(t) := fm(xt)

qm(xt)
= max{hm(xt)−∑M−1

i=m+1�i(t), 0}. Working out this term and denoting the
event Em := {hm(xTm) >

∑M−1
i=m+1�i(Tm)} yields

Dθgm(Tm) = 1Em Dθhm
(
xTm

)− 1Em

M−1∑
i=m+1

Dθ�i (Tm) (29)

In the expression above, the term Dθhm(xTm) is equivalent
to Dθπm,0(Tm) with Km,0 = K. The terms Dθ�i(Tm) for i =
m+ 1, . . . , M − 1 were assumed to be known from previous
iterations.
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Algorithm 1: The static replication algorithm

Generate N risk-factor scenarios for xT0 , . . . , xTM−1 ;
for n = 1, . . . , N do

CM−1(n)← 0;
end
Initialize parameters βM−1 from U(−1, 1);
for m = M − 1, . . . , 1 do

for n = 1, . . . , N do
fm(n)←
qm
(
xTm(n)

) ·max
{
hm
(
xTm(n)

)− Cm(n), 0
}
;

zm(n)← Sm,M
(
Tm, xTm(n)

)
;

end
βm ← arg minβ

1
N

∑N
n=1 (Gm (zm(n); β)− fm(n))

2;
for n = 1, . . . , N do

Cm−1(n)←∑M−1
j=m MTm−1E

Q

[
Gj(zj;βj)

MTj ·qj

(
xTj

)
∣∣∣∣xTm−1(n)

]
;

end
Initialize βm−1 ← βm;

end

Result: V (0) = EQ
[

C0
MT0

∣∣∣x0

]

4.7. The algorithms

Below we summarize the algorithms for composing the repli-
cating portfolios (Algorithm 1) and computing the path-wise
sensitivities (Algorithm 2). For the execution of the path-wise
sensitivity algorithm, it is assumed that the static replication
has been performed and subportfolios �0, . . . ,�M−1 have
been derived from the trained parameters β0, . . . ,βM−1.

5. Numerical experiments

We demonstrate the performance of the algorithms pre-
sented in this work by considering several case studies. We
select a one-factor Gaussian model with piece-wise constant
instantaneous volatility to perform our numerical experiments
(see Andersen and Piterbarg 2010). That is, we consider
state-variable dynamics given by

dxt = (φ(t)− axt) dt + η(t)dWt, x0 = 0

φ(t) =
∫ t

0
e−2a(t−u)η(u) du

rt = f (0, t)+ xt

where the scalar a denotes a constant mean-reversion rate,
Wt is a one-dimensional Brownian motion under Q and
f (t, T) := − ∂ log R(t,T)

∂T denotes the instantaneous forward rate.
The time-zero yield curve is assumed to be a linear interpo-
lation between zero-rates with tenors τk as given in table 1.
We consider a flat yield curve with all zero-rates equal to 3%.
The instantaneous forward rate is assumed to be piece-wise
constant between the tenor dates τk . Each volatility level ηk is
bootstrapped against an ATM European payer swaption with
maturity τk and implied volatility σk , such that σ̃imp(0, τk) =

Algorithm 2: The path-wise sensitivity algorithm

Generate N risk-factor scenarios for xt0 , . . . , xtJ ;
for m = M − 1, . . . , 1 do

A1,m ←
(
EQ
[
πm(Tm)π

�
m(Tm)

] )−1
;

end
for tj = 0, t1, . . . , tJ do

mj ← min
{
0, . . . , M − 1 : tj ≤ Tm

}
;

for m = M − 1, . . . , mj do
θ ← (

R1(tj), . . . , RK(tj)
)�

OR(
σ1(tj), . . . , σK(tj)

)�
;

A2,m ← EQ
[
πmw�Dθπm(Tm)

]
, using

equation (21) / (23);
A3,m ← EQ [πmDθgm(Tm)], using
equation (29) and (21) / (23);

Dθwm ←−A1,m
(
A2,m − A3,m

)
;

for n = 1, . . . , N do
Dθπm(n)← Dθπm

(
tj; xtj(n)

)
using

equation (21) / (23);
Dθ�m(n)←

w�mDθπm(n)+ π�m
(
tj; xtj(n)

)
Dθwm;

end
end
for n = 1, . . . , N do

Dθ�(tj, n)←∑M−1
m=mj

Dθ�m(n);

end
end
Result:

{
Dθ�(tj, n) : j = 0, . . . , J ; n = 1, . . . , N

}

σk . All implied volatility targets σk are set to 50 bps, result-
ing in the instantaneous volatilities presented in table 1. The
mean-reversion rate is fixed a priori at a = 0.01. The tenors
τk have been selected to coincide with the SIMM tenor buck-
ets specified by ISDA (International Swaps and Derivatives
Association, Inc 2020).

Sampling required for regression data, pricing, sensitivi-
ties, exposures and IM profiles is done using Monte Carlo
simulation. The risk factor is simulated through an Euler dis-
cretization scheme. The discretization uses weekly time-steps,
i.e. 
t = 1/52.

As case studies, we consider a 1Y × 5Y and a 1Y × 10Y
Bermudan receiver swaption with unit notional. The under-
lying of the T0 × TM Bermudan is assumed to be a fixed-
for-floating interest rate swap with fixed rate K and a tenor
structure T = {T0, . . . , TM } of annual payments. Unless stated
otherwise, the fixed rate K is selected to be ATM, i.e. K =
KATM := S0,M (0). The exercise dates of the Bermudan are set
to coincide with the fixing dates of the underlying swap, i.e.
T0 being the first and TM−1 being the last exercise opportunity.

The composition of the static replication portfolio relies on
the regression of feed-forward neural networks with a sin-
gle hidden layer. Below, we list some details concerning the
fitting procedure of the neural networks.

• As an independent regression variable for Gm we
select the swap rate Sm,M (Tm). The regression data
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Table 1. Model parameters.

τk 2W 1M 3M 6M 1Y 2Y 3Y 5Y 10Y 15Y 20Y 30Y

Rk 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
ηk(bps) 50.9 50.9 50.9 51.1 51.2 51.2 51.2 51.3 51.3 57.2 57.8 61.0

is normalized before Gm is fitted to the data, to
improve the regression robustness (see Hoencamp
et al. 2023 for details).

• Each network Gm is selected to have 8 hidden
nodes.

• Each regression is performed with a data set of
2000 independently sampled training points.

• The neural network parameters are optimized using
the AdaMax optimizer, which is a stochastic
gradient-descent method (Kingma and Ba 2014).
The batch-size (i.e. number of training points used
per iteration) is set to 32. The learning rate (i.e. the
step-size scaling per iteration) is set to 0.01.

• The parameters of GM−1 are randomly initial-
ized from a uniform distribution U(−1, 1). For
m<M −1, the parameters of Gm are initialized
with the optimized parameters of Gm+1.

5.1. Pricing

We start by analyzing the pricing accuracy of the static repli-
cation. As each neural network has 8 hidden nodes, every

Table 2. V0 estimates Bermudan swaption for different lev-
els of moneyness, presented in basis points of the notional.

1Y × 5Y 1Y × 10Y

K/S0,M SR LSM (SE) SR LSM (SE)

60% 14.43 14.18 (0.15) 61.04 60.20 (0.48)
80% 46.63 46.63 (0.35) 140.7 139.9 (0.8)
100% 130.4 130.3 (0.5) 300.5 300.2 (1.2)
120% 300.4 300.6 (0.7) 590.6 590.2 (1.4)
140% 543.8 544.6 (0.9) 1018.3 1018.8 (1.6)

regression yields a subportfolio of 8 European swaptions.
Hence at t-zero, the 1Y × 5Y Bermudan is replicated with
40 swaptions and the 1Y × 10Y Bermudan is replicated with
80 swaptions.

5.1.1. Time-zero prices. Table 2 reports the V0 price esti-
mates implied by the risk-neutral valuation of the static
replication portfolio (SR) for different levels of moneyness.
As a benchmark, we report price estimates obtained from
the least-square method (LSM) introduced by Longstaff and
Schwartz (2001). As basis functions for the ordinary least-
square regression, we use {1, xt, x2

t , x3
t }. The LSM estimate is

the mean of 25 independent runs of 80 000 MC paths each. In
brackets, we report the standard error generated by these 25
runs.

From table 2, we observe a close correspondence between
SR and LSM, in particular for ATM strikes. The accu-
racy slightly deteriorates for far OTM options. This can be
attributed to a limited number of ITM paths at future monitor
dates, yielding only a few non-zero data-points for the regres-
sion. SR is not subject to a standard error as the portfolios are
evaluated at t-zero. SR is however subject to numerical errors
due to the inaccuracy of the neural network regression. On the
normalized data, the fits typically show a mean squared error
in the order of 10−6 − 10−5.

5.1.2. Exposure profiles. Consecutively, we consider the
exposure profile and related CVA quantities of the Bermu-
dan swaptions. Exposure depends on the future distribution of
the option price. Figure 8 shows the expected positive expo-
sure (EPE) simulated with the static replication next to an
LSM implied benchmark. The benchmark is generated with
the LSM-bundle algorithm, presented in Feng et al. (2016).
We briefly summarize this method below.

Figure 8. Expected positive exposure profile: LSM-bundle (orange) vs. static replication (blue). The LSM and static replication standard
error windows are represented by the orange and blue shaded area, respectively, based on 25 independent runs of 3000 MC paths. (a) 1Y × 5Y
Bermudan and (b) 1Y × 10Y Bermudan.
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Figure 9. Convergence CVA for a 1Y × 5Y (top) and 1Y × 10Y (bottom) Bermudan swaption: LSM-bundle (orange) vs. static replication
(blue). The LSM and static replication standard error windows are represented by the orange and blue shaded area, respectively.

The LSM-bundle algorithm allows one to estimate the
EPE of a Bermudan option when combined with the LSM
algorithm of Longstaff and Schwartz (2001). Within LSM, the
continuation value Cm(Tm) is estimated by regressing realized
(discounted) cashflows at Tm+1 against the risk-factor realiza-
tions at Tm on in-the-money MC paths. However, to compute
the exposure, an unbiased estimate of the continuation value
is required on each MC path on every exposure date (not just
monitor dates). In Feng et al. (2016) it is therefore proposed to
first perform an LSM sweep. Then in a second sweep, for each
exposure date t the MC paths are divided into two bundles. If
t ∈ (Tm−1, Tm], the two bundles are defined as:

U1(t) := {xt : hm(xt) > 0} , U2(t) := {xt : hm(xt) ≤ 0}

Subsequently for both bundles an ordinary least-square
regression is performed against the discounted realized cash-
flows that were computed in the first LSM sweep. The regres-
sion functions provide an unbiased estimate of the exposure
for a given realization of the risk-factor in their respective
domains. We refer to Feng et al. (2016) for details. Note
that for the SR method, no second sweep of regressions
is required. Exposures are obtained by simply pricing the
replicating portfolio along the MC path.

The EPE profiles in figure 8 represent the mean of 25
MC simulations of 3000 paths each. The shaded areas rep-
resent a window of one standard error for both respective
methods. We observe the typical staircase nature that corre-
sponds to the exposure profile of a Bermudan option. Each
discontinuity represents the passing of an exercise opportu-
nity, after which the option is exercised for a certain fraction
of the scenarios. Similar to the time-zero prices, we observe
a good correspondence between the SR estimates and the
benchmark. Additionally, it is noted that the standard error
for SR is significantly smaller compared to LSM-bundle. This
can be attributed to the benefit of the regress-later approach
of SR compared to the regress-now approach of LSM. In the
latter, the continuation value is estimated by regressing the

(noisy) realizations of the cashflow. In the former, the regres-
sion is performed against the deterministic option’s target
value (numerical errors aside). As a result, the MC noise is
integrated out more efficiently with SR. In general, this indi-
cates that a significantly smaller number of MC paths would
be required to reach a similar level of accuracy.

We further study the convergence of the standard error, by
considering the CVA statistic. To do so, we assume a con-
stant LGD = 1 and constant hazard rate of λ(t) = 0.01. The
CVA is estimated using equation (3). Figure 9 shows the mean
and standard deviation of the CVA estimate generated with
25 independent MC runs, as a function of the number of MC
paths per run. We observe that on average the SR standard
error is a factor 4 smaller compared to the LSM-bundle bench-
mark. For an increasing number of paths, the two methods
show a consistent convergence.

5.2. Sensitivities

We continue by analyzing the accuracy in the sensitivity com-
putation for the static replication. We distinguish between
time-zero sensitivities and future sensitivities along the MC
path. The Delta and Vega sensitivities in this section are
understood in accordance with the definitions provided in
section 4.2.

5.2.1. Time-zero sensitivities. Figure 10 reports the time-
zero Delta sensitivities for the 12 tenor buckets. The sensi-
tivities have been scaled to represent the basis point value
w.r.t. the zero-rate Rk . The SR results (presented in blue) are
calculated in accordance with the Delta routine described in
section 4.2. As a benchmark, we consider an LSM bump-and-
reval estimate (presented in orange). For Delta, this means
a zero-rate corresponding to one of the predefined tenors
is bumped with one basis point and the yield curve is re-
interpolated accordingly. The same seed is used for the LSM
base run as for the bumped LSM run, to facilitate variance
reduction.
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Figure 10. Bucketed Delta sensitivities: LSM bump-and-reval (orange) vs. static replication (blue). The LSM benchmark is based on 25
independent runs of 80,000 MC paths. (a) 1Y × 5Y Bermudan and (b) 1Y × 10Y Bermudan.

Figure 11. Bucketed Vega sensitivities: LSM bump-and-reval (orange) vs. static replication (blue). The LSM benchmark is based on 80,000
MC paths. (a) 1Y × 5Y Bermudan and (b) 1Y × 10Y Bermudan.

Figure 11 reports the time-zero Vega sensitivities for the
12 tenor buckets. These sensitivities have been scaled to rep-
resent the basis point value w.r.t. implied volatility σk . The
bump-and-reval benchmark for Vega is obtained by bumping
one of the implied volatilities with one basis point and re-
bootstrapping the volatilty term-structure accordingly. Also
here the same seed is used for the base and the bumped LSM
run.

The results shown is figures 10 and 11 are the mean of 25
independent runs of 80,000 paths each. For the LSM bump-
and-reval, this means 13 LSM simulations were involved for
each run (1 base simulation and 12 bumped simulations).
The SR estimate only requires a single simulation, in order
to estimate the weight sensitivities of the replicating portfo-
lio. The swaption sensitivities can be readily evaluated. The
error bars indicate the standard error of the LSM estimate.
The SR standard errors were each 2 to 3 orders of magni-
tude smaller compared to LSM and are therefore not included
in the figures. Overall, we observe a satisfactory correspon-
dence between the SR sensitivities and the LSM benchmark.
For the LSM Vega, we observe relatively large standard errors
compared to Delta. This can be attributed to the fact that a

bumped yield curve translates one-to-one into bumped zero-
coupon bond prices. A bumped volatility term-structure only
indirectly impacts the risk-factor distribution and is therefore
more susceptible to a higher standard error.

Table 3 reports the SIMM Delta, Vega and Curvature mar-
gins computed with the sensitivity estimates of SR and LSM,
respectively, for different levels of moneyness. In brackets
we report the standard error of the LSM implied quantities.
For the Delta and Vega margin estimates, we see the accu-
racy of the SR method confirmed. The Curvature margin LSM
estimates demonstrate a significantly larger standard error
in the relative sense. Curvature margin reflects the Gamma
sensitivity of the option, which in SIMM is approximated
through a Vega-Gamma relationship (International Swaps and
Derivatives Association, Inc 2016). Second-order sensitivity
approximations are notorious for amplifying numerical errors
of the first order sensitivities, which we see reflected in the
LSM benchmark. The SR estimate does not suffer from such
standard errors.

The convergence of the margin estimates is demonstrated
in figure 12. Here we present the mean and standard error
as a function of the number of MC paths, obtained from 25
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Table 3. IM estimate Bermudan swaption.

1Y × 5Y 1Y × 10Y

K/S0,M Margin SR LSM (SE) SR LSM (SE)

60% Delta 17.44 17.09 (1.19) 53.45 51.70 (4.07)
Vega 7.81 8.09 (0.43) 26.01 26.34 (1.84)
Curv. 1.12 1.42 (0.84) 2.20 3.57 (3.22)

80% Delta 49.07 47.51 (2.91) 112.1 107.0 (6.9)
Vega 14.93 15.54 (0.62) 38.98 39.28 (1.79)
Curv. 2.75 2.91 (1.63) 4.23 4.10 (3.62)

100% Delta 115.2 111.9 (3.8) 213.4 211.3 (14.7)
Vega 19.56 20.04 (1.00) 45.46 46.58 (3.34)
Curv. 5.06 5.61 (2.8) 7.21 8.79 (6.42)

120% Delta 200.5 198.3 (4.7) 355.7 355.5 (14.5)
Vega 12.84 12.80 (1.13) 33.58 34.22 (3.55)
Curv. 4.29 3.63 (2.96) 8.03 10.84 (8.99)

140% Delta 247.3 246.7 (2.4) 464.0 463.1 (10.0)
Vega 2.92 3.09 (0.74) 10.54 10.61 (2.57)
Curv. 1.11 1.58 (1.55) 3.27 4.82 (5.37)

independent runs. We observe that the consistency of the SR
method is confirmed for an increasing number of MC paths.

5.2.2. Future sensitivities: European swaption. We finally
analyze the expected future sensitivity profiles of a Bermudan
swaption. Calculation of expected future sensitivities through

the LSM bump-and-reval method would impose a severe
computational burden. A nested MC simulation is required for
each time-step, on each MC path, for each sensitivity. Bench-
marking future sensitivity profiles is hence not feasible with
LSM and out of scope for this paper.

To verify the accuracy of the SR method along the MC
path, we therefore start by considering a 5Y × 5Y European
payer swaption. This can be considered a special case of the
Bermudan, with only a single exercise opportunity at T0. We
proceed to replicate this swaption, while selecting the 15Y
swap rate as regression asset. As a result, the 5Y × 5Y swap-
tion is replicated with a portfolio of 5Y × 15Y swaptions.
The same neural network structure is used as for the Bermu-
dans. Subsequently, we analyze the sensitivity profiles of the
replicating portfolio, which we benchmark with the analytical
sensitivities of the swaption.

The results are displayed in figure 13. The Vega profiles
on the right show a near-perfect match between SR and the
benchmark. We do observe some numerical errors in the
Delta 10Y , 15Y and 20Y buckets. Around t = 0, the latter
two are dominant for the 5Y × 15Y swaptions in the repli-
cating portfolio, but zero for the target 5Y × 5Y swaption.
If the replication is perfect, the sensitivities in this bucket
cancel with the weight sensitivities. Here we note that some
small errors remain. Yet, overall, we observe a satisfactory
agreement between SR and the analytical profiles.

Figure 12. Convergence Delta (top), Vega (middle) and Curvature (bottom) IM: LSM bump-and-reval (orange) vs. static replication (blue).
The LSM standard error window is represented by the shaded orange area. (a) 1Y × 5Y Bermudan and (b) 1Y × 10Y Bermudan.

Figure 13. Bucketed Delta (left) and Vega (right) profiles for static replication of a European 5Y × 5Y swaption. SR sensitivities (solid) are
shown next to an exact benchmark (dashed). (a) Delta profiles and (b) Vega profiles.
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5.2.3. Future sensitivities: Bermudan swaption. Figure 14
shows the expected future Delta sensitivity profiles of a
Bermudan swaption. The profiles are generated by taking the
mean of 25 independent MC runs of 3000 paths each. The
shaded areas (where visible) represent a single standard error
window. As the underlying is a receiver swap, we note that
the Delta profiles are mostly negative. The tenor buckets sur-
rounding the time until maturity of the underlying swap are
dominant. As time passes, the time to maturity decreases
and the dominant sensitivities shift from one bucket to the
next, implying the triangular-shaped profiles. We see this for
example reflected in the (red-colored) Delta-profile of the 5Y
bucket in figure 14(a). In the first year, the sensitivity grows
(in the absolute sense) to its maximum until the maturity of
the underlying swap is exactly 5Y away. Then, the sensitiv-
ity of this bucket starts to drop and flows into the 3Y bucket.
The discontinuous jumps signify the passing of an exercise
opportunity. Despite the small number of paths, we observe a
satisfactory low standard error.

Figure 15 shows the corresponding expected Vega profiles
and their standard error window. The sensitivities are scaled
by the implied volatility in basis points of each corresponding
bucket, which is in line with the SIMM routines. The Vega
sensitivities are bucketed according to their time to expiry.
Hence, we observe triangular patterns resulting from Vegas

shifting from one bucket into the next as the time until the
future monitor dates decreases. Also here, we observe that
the shaded areas representing the standard errors are minor or
even invisible in the figure, even though the number of paths
is relatively small.

Figure 16 shows the expected initial margin profiles,
obtained from the simulated sensitivity distributions. The
shaded areas again denote a single standard error window. The
figure shows the separate profiles corresponding the Delta-,
Vega- and Curvature margin. The sum of these three yields
the total expected initial margin as a function of time. From
this plot, we observe that overall the Delta margin is dominant
for the computation of IM and MVA. For Delta, we observe
the typical staircase profile. Each discontinuity represents the
passing of an exercise date and the subsequent decrease in
the option’s total Delta sensitivity. The volume of Vega scales
with the square root of the times until expiry of the underly-
ing options. Hence the smooth decay of the Vega margin over
time, with similar jumps after each monitor date. The contri-
bution of the curvature margin to the total IM and MVA is
very limited. In terms of shape, the profile shows a similar
nature as Delta.

We study the convergence of the margin estimates by con-
sidering MVA as a function of the number of MC paths.
Figure 17 shows the Delta-, Vega- and Curvature components

Figure 14. Bucketed Delta profiles for static replication. The standard error windows are represented by the shaded area, based on 3000 MC
paths. (a) 1Y × 5Y Bermudan and (b) 1Y × 10Y Bermudan.

Figure 15. Bucketed Vega profiles for static replication. The standard error windows are represented by the shaded area, based on 3000 MC
paths. (a) 1Y × 5Y Bermudan and (b) 1Y × 10Y Bermudan.



A static replication approach for callable interest rate derivatives 429

Figure 16. Delta (green), Vega (orange) and Curvature (blue) margin profiles for static replication. The standard error windows are
represented by the shaded area, based on 3000 MC paths. (a) 1Y × 5Y Bermudan and (b) 1Y × 10Y Bermudan.

Figure 17. Convergence Delta (top), Vega (middle) and Curvature (bottom) MVA for static replication. The standard error windows are
represented by the shaded areas. (a) 1Y × 5Y Bermudan and (b) 1Y × 10Y Bermudan.

of MVA in separate plots. We report the mean and standard
error, obtained from 25 independent runs. The MVA estimates
have been generated from the future IM distributions, while
assuming a constant funding spread of FS(t) = 0.01. From
the figures, we observe a consistent convergence and see the
low standard errors of the sensitivity profiles confirmed. We
conclude that generally, 3000 MC paths suffice to guarantee a
relative standard error of below 1%.

6. Conclusion

This paper presented a static replication algorithm for Bermu-
dan swaptions under an affine term-structure model. We
showed that under the appropriate conditions, one can con-
struct a portfolio of European swaptions that mirrors the
value of the exotic instrument until it is either exercised
or matured. This replication is static, i.e. despite the early-
exercise features of the instrument, the portfolio does not
need to be re-balanced throughout the lifetime of the original
contract. We continued to derive efficient estimators for the
price and sensitivities of the portfolio along the Monte Carlo
path. These quantities are essential for the quantification of
modern risk metrics such as exposure, CVA, IM and MVA.

Exploiting closed-form price and sensitivity approximations
for European swaptions allowed us to avoid cumbersome
nested simulations that are associated with a naive
bump-and-reval approach. Moreover, this enabled us to accu-
rately estimate high dimensional, bucketed Delta- and Vega
sensitivities, despite the fact that the risk-factors may be
embedded in a low dimensional model. This yielded a richer
handle for sensitivity modeling compared to, for example, a
parallel shift in the model variables. Through several repre-
sentative numerical examples, we demonstrated the perfor-
mance of our approach under a one-factor model, bench-
marked to the established least-square Monte Carlo method
of Longstaff and Schwartz (2001). Overall, we observed
superior convergence for the static replication method with
regard to exposures, sensitivities and IM statistics. Thus, we
demonstrated static replication to be a suitable alternative for
exposure, dynamic IM and MVA quantification.
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Appendices

Appendix 1. Proof of Lemma 4.1

Proof Consider the process

yt := P(t, T1)

P(t, T0)

As y represents a tradable asset denominated by the numéraire, it fol-
lows that y is a Martingale under QT0 . An application of Itô’s lemma
and a subsequent measure change shows that y satisfies the following
SDE

dyt = yt (B(t, T0)− B(t, T1))
� η(t) dWT0

t

where WT0 denotes a d-dimensional Brownian motion under QT0 .
Denoting η̂(t) := (B(t, T0)− B(t, T1))

�η(t) and solving the SDE,
conditioned on Ft yields

P(T0, T1) := yT0 =
P(t, T1)

P(t, T0)
e
∫ T0

t η̂(u) dW
T0
u

Let τ0 = T0 − t and τ1 = T1 − t. Note that by the definition of the
zero-rate, the expression above can be rewritten as

P(T0, T1) = exp

{
τ0R(t, t + τ0)− τ1R(t, t + τ1)+

∫ T0

t
η̂(u) dWT0

u

}
Therefore, the forward Delta sensitivity can be computed as

∂P(T0, T1)

∂Rk(t)
=
(
τ0
∂R(t, t + τ0)

∂Rk(t)
− τ1

∂R(t, t + τ1)

∂Rk(t)

)
P(T0, T1)

where α′k(τi) := τi
∂R(t,t+τi)
∂Rk(t)

denotes an Ft-measurable coefficient.
Under the assumption that the time-t zero-rate curve τ 
→ R(t, t + τ)
is an interpolation between nodes {R0(t), . . . , RK(t)}, it follows that

∂R(t, t + τ0)

∂Rk(t)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ − τk−1

τk − τk−1
if τ ∈ (τk−1, τk]

τk+1 − τ
τk+1 − τk

if τ ∈ (τk , τk+1]

0 otherwise

This concludes the proof. �

Appendix 2. Proof of Lemma 4.2

Proof Let 0 ≤ t ≤ T ≤ Tm. Note that we can write

σimp(T , Tm)

=
√

1

Tm − T

∫ Tm

T
‖�̃�m,M (u)η(u)‖22 du

=
√

1

Tm − T

(∫ Tm

t
‖�̃�m,M (u)η(u)‖22 du−

∫ T

t
‖�̃�m,M (u)η(u)‖22 du

)

= 1√
Tm − T

√
(Tm − t)σ̃ 2(t, Tm)− (T − t)σ̃ 2(t, T)

Subsequently applying the chain rule to this expression yields

∂σimp(T , Tm)

∂σk(t)
= 1√

Tm − T

(Tm − t) ∂σ̃
2(t,Tm)
∂σk(t)

− (T − t) ∂σ̃
2(t,T)
∂σk(t)

2
√
(Tm − t)σ̃ 2(t, Tm)− (T − t)σ̃ 2(t, T)

=
(Tm − t)σ̃ (t, Tm)

∂σ̃ (t,Tm)
∂σk(t)

− (T − t)σ̃ (t, T) ∂σ̃ (t,T)
∂σk(t)

(Tm − T)σ̃imp(T , Tm)

This concludes the proof. �

Appendix 3. Proof of Lemma 4.3

Proof Recall that it is assumed that the instantaneous volatility
in (1) takes values in R and is piece-wise constant between dates
{τ0, . . . , τK}. Furthermore it is assumed that the volatility levels
η1, . . . , ηK are obtained through a bootstrap procedure, such that the
implied volatility approximations σ̃imp given in (17) agree with the
implied volatilities σk observed in the market. Lastly, note that only
ηk and ηk+1 are sensitive to a change in σk if other market-implied
volatilities are kept fixed. For compactness of notation, we show the
proof for t = 0. The generalization to t> 0 follows the same line of
thought.

First consider the case τk−1 ≤ T < τk . Note that we can write

τkσ
2
k =

∫ Tk−1

0
�2

k (u)η
2(u) du+ η2

k

∫ Tk

Tk−1

�2
k (u) du

=⇒ η2
k =

τkσ
2
k −

∫ Tk−1
0 �2

k (u)η
2(u) du∫ Tk

Tk−1
�2

k (u) du
(A1)

Furthermore, we have the relation

σ̃ (0, T) =
√

1

T

(∫ Tk−1

0
�2

m,M (u) η
2(u)du+ η2

k

∫ T

Tk−1

�2
m,M (u) du

)

It follows by the chain rule

∂σ̃ (0, T)

∂σk
= 1

2σ̃ (0, T)

1

T

∂

∂σk

×
(∫ Tk−1

0
�2

m,M (u) η
2(u)du+ η2

k

∫ T

Tk−1

�2
m,M (u) du

)

= 1

2T σ̃ (0, T)

(∫ T

Tk−1

�2
m,M (u) du

)
∂η2

k

∂σk

= τkσk

T σ̃ (0, T)

∫ T
Tk−1

�2
m,M (u) du∫ Tk

Tk−1
�2

k (u) du

where the last equality follows from substituting η2
k with (A1).

The case τk ≤ T < τk+1 follows a similar line of thought. Note
that we can write

τk+1σ
2
k+1 =

∫ Tk−1

0
�2

k+1(u)η
2(u) du+ η2

k

∫ Tk

Tk−1

�2
k+1(u) du

+ η2
k+1

∫ Tk+1

Tk

�2
k+1(u) du

=⇒ η2
k+1 =

τk+1σ
2
k+1 −

∫ Tk−1
0 �2

k+1(u)η
2(u) du

−η2
k

∫ Tk
Tk−1

�2
k+1(u) du∫ Tk

Tk−1
�2

k+1(u) du
(A2)

Furthermore, we have the relation

σ̃ (0, T) =
√√√√ 1

T

(∫ Tk−1
0 �2

m,M (u) η
2(u)du+ η2

k

∫ Tk
Tk−1

�2
m,M (u) du

+η2
k+1

∫ T
Tk
�2

m,M (u) du

)

Applying the chain rule to the expression above, while substituting
η2

k and η2
k+1 with (A1) and (A2), respectively, we find

∂σ̃ (0, T)

∂σk

= τkσk

T σ̃ (0, T)

×
⎛
⎝∫ Tk

Tk−1
�2

m,M (u) du∫ Tk
Tk−1

�2
k (u) du

−
∫ T

Tk
�2

m,M (u) du∫ Tk+1
Tk

�2
k+1(u) du

∫ Tk
Tk−1

�2
k+1(u) du∫ Tk

Tk−1
�2

k (u) du

⎞
⎠
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If by approximation �m,M ≈ �k ≈ �k+1, the expression above
reduces to

∂σ̃ (0, T)

∂σk
= τkσk

T σ̃ (0, T)

∫ Tk+1
T �2

m,M (u) du∫ Tk+1
Tk

�2
k+1(u) du

�

Appendix 4. Proof of Proposition 4.4

Proof For compactness, we will write πm := πm(Tm). First, note
that πm,i is continuously differentiable w.r.t. θ t for all i = 1, . . . , n. It
follows that λm is continuously differentiable w.r.t. both θ t and wm.
Secondly, we show that Dwλm is non-singular. By the nature of the
ReLu function, the payoffs πm,1, . . . ,πm,n are linearly independent
when the strikes are disjoint. That is, there is no v ∈ Rn such that
v�πm = 0 a.s. Now consider the matrix EQ[πmπ�m]. As a property of
the auto-correlation matrix, it is known to be positive semi-definite,
i.e.

∀v∈Rn : v�EQ
[
πmπ�m

]
v ≥ 0

Through an argument by contradiction, we can show the matrix is
in fact strictly positive definite. In that regard, assume there exists a
v ∈ Rn such that v�EQ[πmπ�m]v = 0. It would follow that

0 = v�EQ
[
πmπ�m

]
v = EQ

[
v�πmπ�mv

]
= EQ

[∣∣∣v�πm

∣∣∣2]

this is in contradiction with the fact that πm,1, . . . ,πm,n are lin-
early independent. Hence we can conclude that EQ[πmπ�m] is a
real-valued, symmetric matrix, which is strictly positive definite. It
follows that all its eigenvalues are real and positive. As the determi-
nant of a symmetric matrix is the product of its eigenvalues, we can
conclude that Dwλm has a positive determinant and is non-singular.
The result now follows by an application of the implicit function
theorem. �
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