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ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a major public health problem worldwide.
COPD is strongly related to cigarette smoke exposure, but not all smokers develop the disease.
It is thought that COPD progresses slowly over time stimulated by environmental exposures,
including free radicals from cigarette smoke, which ultimately establish chronic inflammation
and result in a progressive destruction of lung tissues. COPD is known to occur in family
clusters, which has prompted interest in determining genetic risk factors for the disease. Sev-
eral genetic studies have identified an association between extracellular superoxide dismutase
(ECSOD) polymorphisms and risk for developing COPD. ECSOD is an antioxidant protein that
scavenges superoxide free radicals from cigarette smoke and protects the lungs from free
radical damage and chronic inflammation.

INTRODUCTION

Chronic Obstructive Pulmonary Disease (COPD) is the
fourth leading cause of death in the world and is a major public
health problem due to its associated disability and consump-
tion of health care resources. It is primarily related to tobacco
smoke exposure, although other inhalational exposures appear
to increase the risk of disease. However, not all smokers will
develop COPD. A recent study found that only 25% of smokers
developed COPD in a Danish population (1). This suggests that
individuals have varying susceptibility to develop the disease.

COPD prevalence rises with increasing age and is known
to occur in family clusters. Increased risk of COPD in smok-
ers’ relatives and recognition of a specific genetic mutation,
alpha 1 antitrypsin deficiency, that leads to COPD, have ex-
cited interest in defining the genetic risk factors for the disease.
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Several genetic studies have separately identified an association
between extracellular superoxide dismutase (ECSOD or SOD3)
polymorphisms and altered risk of COPD (2, 3). ECSOD is an
antioxidant and anti-inflammatory protein found in high concen-
trations in both lung tissue and in the lung lining fluids (4). It
has been hypothesized by many that COPD progression involves
both the release of free radicals and redox sensitive proteases
that result in small airway inflammation, fibrosis and alveolar
wall destruction.

Pathophysiology of COPD

COPD is a clinical syndrome defined by chronic expiratory
airflow obstruction leading to exercise intolerance and dyspnea.
However, a comprehensive description of the disease remains a
work in progress. Classic descriptions of chronic bronchitis and
emphysema define polar aspects of COPD disease phenotypes;
however, the majority of COPD patients display mixed patterns
of airway disease and emphysematous loss of lung parenchyma.
High resolution chest CT scans of COPD subjects demonstrate
various combinations of large and small airway disease leading
to air trapping and variable patterns and degrees of emphysema.

The time course and progression of COPD includes: cigarette
smoke or environmentally induced airway inflammatory disease
that leads to chronic cough and sputum production. There is a
significant gap of years between smoking exposure and the de-
velopment of clinical disease. Ultimately, immune defenses are

COPD: Journal of Chronic Obstructive Pulmonary Disease August 2009 307



activated in response to chronic inflammatory cytokines and
recurrent infections. Recurrent infections in COPD patients are
associated with alterations in immune mechanisms and a role for
both macrophages and neutrophils has been defined in COPD
pathogenesis (5). The unique characteristic of patients with
COPD is that they develop persistent chronic inflammation that
is not successfully controlled. These inflammatory events break
down lung collagen by chronic activation of local proteases.
The results of these chronic inflammatory events are changes in
alveolar size and lung compliance producing emphysema (6),
and chronic airway inflammation.

Cigarette smoking, COPD and free radicals
in the lung

The lung has an extensive surface area that is exposed to
environmental irritants, such as cigarette smoke, which causes
free radical production. Each puff of cigarette smoke has been
reported to contain up to 1014 free radical molecules as well
as 4700 chemicals (7). Some of these chemicals are short term
free radicals such as superoxide (O·−

2 ) and nitric oxide (NO) and
others are long acting free radicals such as semiquinones (8).
Cigarette smoke enhances recruitment of inflammatory cells to
the lung (9). Inflammatory cells, such as activated neutrophils
and macrophages, can produce large amounts of reactive oxygen
species (ROS), mainly through the NADPH oxidase system (10).
It has been hypothesized that the ROS released by inflammatory
cells recruited to sites of injury, cause extensive tissue damage
which leads to chronic inflammation (11). ROS release by neu-
trophils and macrophages not only damages surrounding tissues,
it can also directly damage/inactivate antioxidant enzymes (11).
ROS from activated neutrophils can cause proteolysis of the an-
tioxidant, ECSOD, rendering it inactive (11). Thus, chronic free
radical production can inhibit the activity of the very enzymes
released to protect the body from free radical damage.

Free radicals and reactive species that generate oxidative
stress are short lived; thus, oxidative stress is identified by mea-
suring end products of free radical reactions that have already
occurred. These oxidative stress markers include lipid peroxi-
dation (isoprotanes), protein carbonyls, nitrotyrosine formation,
glutathione levels and DNA damage. COPD has been associated
with increased isoprostanes and lipid peroxidation (12–15), and
elevated nitric oxide production and nitrotyrosine formation (16,
17), supporting a role for oxidative stress in the disease. More-
over, these markers are elevated even in mild COPD (18, 19).
Leukocytes from COPD subjects have increased generation of
superoxide, increased SOD activity, increased protein carbonyls
and increased glutathione levels as compared to controls (20).

Lung inflammation persists even after a person stops smok-
ing (21). One study found that for an ex-smoker, it takes up to
3 years of not smoking for lung macrophage numbers to de-
crease to the levels of a never smoker (9). A recent prospective
study found that oxidative stress persists in the lungs for months
after smoking cessation (22). Another study demonstrated that
respiratory bronchiolitis, a common inflammatory lesion of the
respiratory bronchioles associated with smoking, can occur or

persist well after a person has stopped smoking. Respiratory
bronchiolitis was found in 42% of patients who had quit smok-
ing for 3 years and 33% who had quit for 5 years (21). Hogg
et al. found increased lymphocyte numbers in airways of pa-
tients with severe COPD that had not smoked for an average
of 9 years (23). Taken together these data indicate that smoking
causes chronic inflammation and oxidative stress in the lung and
that both persist well after a person has stopped smoking.

Cigarette smoke can overwhelm the capacity of lung antiox-
idant defenses and lead to chronic oxidative stress and inflam-
mation in the respiratory system (24, 25). Oxidative stress in
the lung may also be perpetuated by recurrent infections with
excess accumulation of inflammatory cells.

ECSOD background

The lung has several lines of defense to protect against oxi-
dants, pollutants, and irritants, such as cigarette smoke. One im-
portant line of defense is the production of antioxidant enzymes
(4). Superoxide dismutases are powerful antioxidant enzymes
that reduce the superoxide radical to a less reactive hydrogen
peroxide molecule (26). There are two superoxide dismutases
localized in lung cells (MnSOD and CuZnSOD) and one super-
oxide dismutase primarily localized in the extracellular space
of the lung (ECSOD, Figure 1) (26–28). Other lung antiox-
idant enzymes such as catalase, glutathione peroxidases, and
the thioredoxin/peroxiredoxin and glutaredoxin families of en-
zymes further contribute to the scavenging of hydrogen peroxide
to water (4). Together these antioxidant enzymes work to protect
the lung from oxidatative stress.

Figure 1. ECSOD modulates oxidative damage and inflamma-
tion. ECSOD creates a less oxidizing environment by reducing
the highly reactive superoxide radical (O·−

2 ) to the less reactive hy-
drogen peroxide molecule (H2O2). Other lung antioxidants, such
as catalase and peroxidases, further reduce H2O2 to water. Thus,
in the presence of ECSOD and other antioxidants there are fewer
reactive oxygen species, which creates an anti-inflammatory envi-
ronment. However, when ECSOD is not present, a more oxidizing
environment occurs because O·−

2 quickly forms other reactive oxy-
gen species, i.e., hydroxyl radical (OH·), peroxynitrite (ONOO−),
and bleach (HOCl). A more oxidizing environment promotes pro-
inflammatory signaling that can lead to matrix degradation.
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Figure 2. ECSOD protects the extracellular matrix within the lung from oxidant damage. ECSOD has a positively charged binding tail that binds
to negatively charged collagen and proteoglycans found in the extracellular matrix. In lung, this results in high levels of ECSOD being associated
with extracellular matrix elements found in the thick portions of the alveolar septum. ECSOD is synthesized in alveolar type II cells and is secreted
into airway lining fluids. Potential sources of oxidants include inhaled airborne molecules as well as oxidants generated by cellular metabolism
and those released by inflammatory cells. Protection of both airway and alveolar septa from oxidative stress is necessary to ensure that the
large surface area of the lung and extensive alveolar fibroskeleton remain intact and functional. Cleavage of these structural proteins may play
a role in the development of emphysema.

The major SOD in extracellular fluids is ECSOD (27). EC-
SOD is found in high abundance in the lung, the fluid lining the
lung and in the vasculature (29, 30). In particular, ECSOD is
located in the lung extracellular matrix, at airway epithelial cell
junctions, in the lining of vessels and at the surface of airway
smooth muscles (29, 30). ECSOD is a 135,000 mw tetrameric
glycoprotein that has a N-terminal signal peptide for secretion
out of the cell, a copper/zinc containing activity domain and a
C-terminal heparin binding tail (31). The positively charged hep-
arin binding tail allows ECSOD to bind to negatively charged ex-
tracellular matrix elements and to endothelial cells (32). The dis-
tribution of ECSOD in extracellular compartments indicates that
the enzyme plays a critical role in protecting extracellular matrix
proteins from free radical damage and potentially protecting this
tissue from the progression of chronic inflammation (Figure 2).

ECSOD function in lung

ECSOD is important in protecting the lung from free radical
damage and in controlling inflammation (33). ECSOD ame-
liorates a wide range of lung injuries. ECSOD protects mice
from asbestos-induced lung injury (34). Asbestos exposed mice
lacking ECSOD have a greater inflammatory response, more
fibrosis, and more oxidative damage as compared to exposed
wild-type mice (35). In another lung injury model, hyperoxia,
toxicity is reduced by high levels of ECSOD (36). In that partic-
ular model, animals that overexpress ECSOD had significantly

lower mortality rates as compared to wild type animals and had
fewer inflammatory cells in their bronchial alveolar lavage fluid
as compared to wild-type mice (36). Recently, Gongora, et al.
found that conditional ECSOD knock-out in mature animals
leads to acute lung injury at ambient levels of oxygen (37).

ECSOD has also been shown to protect against bleomycin-
induced pulmonary fibrosis. Mice that overexpressed ECSOD
had less fibrosis and reduced total lung collagen (38). Finally,
ECSOD inhibits inflammation associated with lipopolysaccha-
ride (LPS) exposure (39). ECSOD reduced the number of neu-
trophils in the lung airways and reduced expression of the in-
flammatory cytokines, TNF-α and MIP-2 (39).

ECSOD has been shown to play an important role in protect-
ing lung extracellular matrix from inflammation in vitro (33).
ECSOD binds to a variety of human extracellular matrix pro-
teins via its C-terminal binding domain (4). ECSOD binds to
collagen, hyaluronan, and heparan sulfate, all proteins found
in high abundance in the lung extracellular matrix (40–42).
Under oxidative conditions, the extracellular matrix becomes
damaged by free radical production and the proteins that make
up the extracellular matrix fragment. Accumulation of these
collagen, hyaluronan and heparan sulfate fragments elicits in-
flammatory responses in the extracellular matrix (40–42). When
present, ECSOD binds to extracellular matrix proteins and pro-
tects these proteins from fragmentation (40–42). Thus, ECSOD
protects the human extracellular compartment from damage due
to oxidative stress.
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Table 1. Summary of genetic association studies of COPD with ECSOD

Reference Study Population Subjects Findings

Juul et al. (2006) Danish Population n = 9258 ECSOD R213G mutation protects smokers from COPD
Young et al. (2006) European Decent Population n = 440 ECSOD R213G mutation protects smokers from COPD
Wilk et al. (2007) Framingham Heart Study n = 1578 SNPs near ECSOD gene exhibited association to lung function
Dahl et al. (2008) Copenhagen City Heart Study n = 9093 An ECSOD polymorphism (E1/I1) was associated with COPD morbidity
Dahl et al. (2008) Copenhagen General Population Study n = 35635 No association of ECSOD (E1/I1) with COPD morbidity was found

ECSOD has been shown to inhibit fibrosis. Epithelial cells
and macrophages release transforming growth factor-β (TGF-
β), which stimulates fibroblast proliferation and leads to fibrotic
lesions (43). ECSOD inhibits the TGF-β signaling pathway and
thus prevents fibrosis in vivo (44). COPD is a disease character-
ized by sites of inflammation and fibrosis and ECSOD is critical
in the control of both of these processes.

Genetic studies involving ECSOD in lung
function and COPD disease

Significant familial aggregation of both spirometric lung
function and COPD has been shown in a number of studies
(45–48). Several genetic studies have shown that ECSOD
polymorphisms are associated with normal and altered lung
function. In mice, SOD3 variants were associated with reduced
lung function (49). In humans, associations between ECSOD
polymorphisms and reduced lung function in children and adults
have been observed (2, 50). Genome wide association in the
Framingham Heart study showed association of a SNP close to
the ECSOD gene with percent predicted FEV1 and percent pre-
dicted FVC (51). Arcaroli et al. have shown that certain ECSOD
haplotypes reduce lung inflammation and decrease the severity
of acute lung injury and mortality (52). Therefore, both animal
and human genetic studies have shown that polymorphisms in

Figure 3. ECSOD functional mutation (R213G) in binding tail. EC-
SOD has a described mutation at amino acid number 213 in its
binding tail where a C to G nucleotide substitution changes the
amino acid from an arginine to a glycine. This arginine is one of a
cluster of 6 positively charged amino acids in the carboxy terminus
of the protein that creates strong binding affinity to heparin and
other negatively charged matrix elements. The result of replacing
this one arginine with glycine is that the protein has a marked de-
crease in affinity for the negatively charged extracellular matrix and
a marked increase in its circulating levels. This mutation occurs in
4–6% of northern European populations.

ECSOD are important in lung function, with specific polymor-
phisms associated with either an increase or a decrease in lung
function.

Five genetic studies have evaluated the relationships of EC-
SOD and risk of COPD (Table 1, (53)). In two independent stud-
ies, using two different populations, ECSOD polymorphisms
have been correlated with a reduced risk of developing COPD
(3, 54). In particular, the ECSOD polymorphism, R213G, has
been shown to reduce the risk of smokers to develop COPD
(3, 54). This polymorphism causes a substitution of an arginine
for a glycine at amino acid 213 in the heparin binding tail of
ECSOD (Figure 3). The normal heparin binding tail of ECSOD
has a cluster of 6 positively charged amino acids, which allows
ECSOD to bind to the negatively charged extracellular matrix
(Figure 3, (3, 54)). The R213G mutation reduces the positive
charge on the binding tail, and markedly alters the protein’s
affinity for binding to tissues or extracellular matrix. A result
of this is that high circulating levels occur for the R231G EC-
SOD protein- and it is presumed that this is associated with high
amounts in the airway lining fluids where it would be in an ideal
position to protect the lung from antioxidant injury induced by

Figure 4. Effect of ECSOD binding tail mutation on COPD risk
in smokers. A. This Figure is adapted from Young et al. (54) and
shows smokers who have not developed COPD have a significantly
higher incidence of the G allele at the R213G locus as compared to
smokers who developed COPD. This protection from the effects of
smoking is presumed to be related to increased levels of ECSOD
secreted into the alveolar lining fluid, and thereby, more effective
antioxidant protection from airborne oxidants found in cigarette
smoke. B. This figure is adapted from Juul et al. (3). This prospec-
tive study followed individuals for an average of 24 years and found
that individuals heterozygous for the ECSOD R213G mutation had
significantly lower COPD morbidity and morality rates as compared
to individuals that were noncarriers for this ECSOD mutation.
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inhaled oxidants, such as cigarette smoking. Thus, individuals
who smoke and are carriers of this ECSOD polymorphism are
at a reduced risk of developing COPD (Figure 4A&B).

SUMMARY

Most people who develop COPD are smokers or former
smokers. Smoking increases lung oxidative stress, increases in-
flammatory cytokines, and causes recruitment of inflammatory
cells to the lung. When not controlled, this chronic inflamma-
tory process leads to chronic airway disease, destruction of lung
tissue and COPD. COPD is found in family clusters, which
suggests that genetics plays an important role in the progres-
sion of COPD. Several genetic studies have indicated that the
R213G mutation in ECSOD is associated with protection from
the development of COPD. The R213G mutation results in high
circulating levels of ECSOD and likely high levels in alveolar
and airway linking fluids where it could protect the lung inter-
face from the effects of inhaled free radicals in tobacco smoke.
ECSOD both scavenges free radicals and controls inflammation
associated with COPD.

Both animal models and human genetic studies have demon-
strated associations of ECSOD with lung function and develop-
ment of smoking related diseases. A common ECSOD polymor-
phism has been shown to reduce the risk of developing COPD.
While this polymorphism could account for only a small por-
tion of the smokers who are resistant to developing COPD, it
demonstrates the potential importance of ECSOD in protecting
the lung from oxidative stress. A relative deficiency or inad-
equate up-regulation of ECSOD in response to stress may be
an important component in enhancing risk for development of
COPD.
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