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ABSTRACT
A systematic literature review was performed to identify all peer-reviewed literature quantifying the asso-
ciation between short-term exposures of particulate matter <2.5 microns (PM2.5), nitrogen dioxide (NO2),
and sulfur dioxide (SO2) and COPD-related emergency department (ED) visits, hospital admissions (HA), and
mortality. These results were then pooled for each pollutant through meta-analyses with a random effects
model. Subgroup meta-analyses were explored to study the effects of selected lag/averaging times and
health outcomes. A total of 37 studies satisfied our inclusion criteria, contributing to a total of approximately
1,115,000 COPD-related acute events (950,000 HAs, 80,000 EDs, and 130,000 deaths) to our meta-estimates.
An increase in PM2.5 of 10 ug/m3 was associated with a 2.5% (95% CI: 1.6–3.4%) increased risk of COPD-related
ED and HA, an increase of 10 ug/m3 in NO2 was associated with a 4.2% (2.5–6.0%) increase, and an increase
of 10 ug/m3 in SO2 was associated with a 2.1% (0.7–3.5%) increase. The strength of these pooled effect esti-
mates, however, varied depending on the selected lag/averaging time between exposure and outcome.
Similar pooled effects were estimated for each pollutant and COPD-related mortality. These results suggest
an ongoing threat to the health of COPD patients from both outdoor particulates and gaseous pollutants.
Ambient outdoor concentrations of PM2.5, NO2, and SO2 were significantly and positively associated with
both COPD-related morbidity and mortality.

Introduction

Chronic obstructive pulmonary disease (COPD), character-
ized by progressive irreversible airflow limitation and chronic
inflammation of the lungs, is an increasingly prevalent dis-
ease in both developed and developing countries (1). It is cur-
rently the fourth leading cause of death globally (2,3). The dis-
ease represents an important economic burden for individual
patients and healthcare systems (4), with estimated direct costs
of $29.5 billion and indirect costs of $20.4 billion in the United
States (1). These costs are largely due to exacerbation of COPD,
which in severe cases can result in emergency department (ED)
visits, hospital admissions (HA), and death (5). One potential
trigger for such exacerbations is short-term exposures to out-
door air pollution (1). In the past two decades, numerous epi-
demiological studies have investigated the short-term effects
of outdoor air pollution on this sensitive population by study-
ing COPD-related morbidity (as ED and HA) and mortality
(6). Most of these studies report significant positive associa-
tions for exposures to particulate matter (PM), with conflicting
evidence for the other United States Environmental Protection
Agency (USEPA) criteria gaseous air pollutants, including nitro-
gen dioxide (NO2) and sulfur dioxide (SO2) (6).

Although meta-analysis (7) has been widely used to com-
bine the study results quantifying the association between
short-term exposures to outdoor air pollution and overall res-
piratory disease-related ED-HA and mortality, only four have
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estimated pooled effects among COPD patients (8–11). Two
of these looked specifically at PM10 exposures (8,9) and one
focused solely on studies completed in China (10). There has
yet to be a systematic review of all the existing literature and
meta-analysis for two pollutants currently of great public health
concern—NO2 and SO2. The lack of pooled risk estimates for
these gaseous pollutants limits the ability to fully understand the
impact that outdoor air pollution may have on COPD patients.
In this study, a systematic literature review and meta-analysis
were carried out to synthesize risk estimates for COPD-related
morbidity and mortality outcomes due to short-term expo-
sures (up to a maximum of 7 days) to PM2.5, SO2, and NO2.
Subgroup analyses were used to evaluate the implications that
selected lag/averaging times between exposure and outcome
had on pooled effect estimates, as well as to study the differ-
ences in pooled effect estimates for various acute COPD-related
outcomes.

Methods

Search strategy

A comprehensive systematic literature review (12) was con-
ducted in PubMed and Medline databases to identify relevant
peer-reviewed articles. The following Medical Subject Head-
ing (MeSH) criteria (13) were used in PubMed: (“Pulmonary
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Disease, Chronic Obstructive/epidemiology”[Mesh]) AND
((“Air Pollution/adverse effects”[Mesh]) OR (“Air Pollu-
tants/adverse effects”[Mesh]) OR (“Sulfur Dioxide”[Mesh]) OR
(“Nitrogen Dioxide”[Mesh]) OR (“Particulate Matter”[Mesh])).
The following key word criteria were used in Medline: (“Air
Pollution” OR “Sulfur Dioxide” OR “Nitrogen Dioxide” OR
“Particulate Matter”) AND (COPD OR “Chronic Obstruc-
tive Pulmonary Disease”) AND (Hospital∗ OR Emergency
OR Mortality). Additional filters were added to both search
strings and databases to limit results to studies published in
English between the years 1995 and 2015. In addition, the
titles of all references from all eligible studies captured in
the PubMed/Medline searches, as well as those referenced in
USEPA Integrated Science Assessment (ISA) documents for
each pollutant (14–16), were reviewed.

Titles and abstracts for all identified articles were screened
by two researchers (RD and DK). Any study that investigated
the association between short-term outdoor air pollution expo-
sures and COPD-related ED, HA, or mortality was retained for
full-text review. Of these studies eligible for full-text review,
any study that provided quantitative estimates for the associa-
tion between short-term exposures to PM2.5, SO2, and NO2 and
COPD-related ED, HA, or mortality with measures of uncer-
tainty (p-values or confidence intervals [CIs]) was included and
relevant information was extracted into an Excel database. One
study (17) was excluded as it re-evaluated data included in an eli-
gible study published on an earlier date (18). We also excluded
one study that did not provide sufficient information to estimate
95% CIs (19) and another that did not explore or control for con-
founding (20).

Many studies investigated and reported the results for differ-
ent lag/averaging times, which is problematic for meta-analyses,
where researchers must select one estimate of the magnitude of
the association between exposure and disease from each indi-
vidual study to inform the meta-effect estimate. Some stud-
ies identified in the air pollution–COPD literature specified an
exposure window a priori, while others investigated numerous
lag/averaging times and either reported all results or only those
with the largest or most significant effect estimate. Choosing to
report one effect estimate rather than another because of effect
size or statistical significance could introduce bias into the meta-
effect estimate (21). As there was little consistency in the expo-
sure metrics presented among the eligible studies and limited
information regarding their biological mechanisms, results from
several exposure categories were extracted from each study: 1)
single-day lags, up to a maximum of two days, 2) multi-day aver-
ages or distributed lags, up to a maximum of seven days, and 3)
the strongest effects across all available lag and averaging times.
When multiple estimates were available for any of these cate-
gories, the strongest result within that category was selected.

A majority of studies estimated exposures for these
lag/averaging times using 24-hour daily average concentra-
tions. When results were provided for multiple daily metrics
(such as 1-hour daily maxima and 24-hour daily averages),
only results based on 24-hour daily averages were included
(22,23), with the exception of one study that only provided
results using 1-hour daily maxima (24). A number of studies
estimated results across various cities (22,25–29). Some of
these studies calculated the effects using raw data from all

cities, while others calculated effect estimates for each city and
then combined the results in a meta-analysis model. Wherever
possible, we included pooled multi-city effects. Only two stud-
ies reported the effects stratified by season, and the stratified
season-specific estimates were included (30,31). When studies
reported results for different age groups, effect estimates from
elderly populations (ages 65+) were selected (32,33).

Statistical analyses

As studies presented results for different units of concentration,
a series of conversions were completed prior to pooling individ-
ual effects through meta-analysis. All results reported in parts
per billion (ppb) were first converted to ug/m3, assuming stan-
dard pressure and temperature. Risk estimates were then further
standardized to represent the effects associated with an increase
of 10 ug/m3 in the concentration in PM2.5, SO2, and/or NO2. An
increase of 10 ug/m3 was selected for all pollutants as it was the
most commonly used unit of analysis across the studies included
in our pooled effect estimates.

Pooled summary effects were estimated with Comprehensive
Meta-Analysis software (version 2.0) for each pollutant and out-
come combination. Summary effects were calculated using the
weighted mean of individual effects, with weights equal to the
inverse of each study’s variance (34). In order to account for
between-study variability, a random-effects model was chosen
a priori. The appropriateness of this decision was confirmed by
evaluating heterogeneity statistics. Forest plots were developed
in Microsoft Excel for each pollutant using the exposure cate-
gory that provided the strongest summary effects (represented
by the highest pooled relative risk and discussed further below).
In these plots, the size of the symbols represents the relative
weight of that study when computing summary effects (34,35).
Additional subgroup analyses were completed to assess the dif-
ferences by health outcome. In this study, a minimum of three
studies were required to calculate a pooled effect estimate.

Heterogeneity was examined using standard Q and I2 tests
(36–38). In the Q statistic tests, the null hypothesis of homoge-
nous effect sizes (36) with a p < 0.10 suggested substantial het-
erogeneity between studies. The I2 statistic quantified the per-
cent of total variability in effect sizes due to variability between
studies, rather than within-study sampling error (36–38). Con-
sequently, a higher I2 suggests greater heterogeneity between
studies.

Summary effect estimates are expressed as relative risks (RRs)
for 10 ug/m3 increases in pollutant concentration. The RR was
selected because it is an intuitive commonly used measure in
public health literature.

Results

The initial literature searches completed in PubMed and Med-
line databases identified 296 and 329 citations, respectively
(Figure 1). After duplicates were removed, a total of 534 articles
were left for title and abstract review. After screening titles and
abstracts to eliminate articles that were overviews/reviews of the
existing literature, clinical or animal studies, studies focused on
unrelated exposures (such as occupational, indoor, or tobacco
smoke exposures), or studies evaluating unrelated outcomes
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Figure . Summary of systematic literature review.

(such as COPD onset, lung cancer, asthma, pulmonary func-
tion testing, or self-reported respiratory symptoms), 103 arti-
cles were considered potentially eligible and their full text was
obtained and reviewed. Of these studies, an additional 71 were
excluded as they did not present quantitative effect estimates
or provide sufficient detail to estimate 95% CIs, were a re-
analysis of data already captured in an eligible article published
at an earlier date, focused solely on exposure assessment or ana-
lytical methods, or evaluated other outdoor air pollutants not
included in this review (such as PM10, PM speciation, ozone,
or proximity to traffic). Five additional studies were identi-
fied in the references of eligible articles and USEPA ISA docu-
ments (14–16), resulting in a total of 37 studies for meta-analysis
(Table 1).

Of the 37 eligible studies, eight were case crossover and 29
were time series studies. Most of the time series studies were
analyzed via Poisson regression with generalized additive mod-
els, while the case-crossover studies were analyzed with condi-
tional logistic regression. Nine studies focused on COPD-related
ED, 17 on COPD-related HA, and 11 on COPD-related mor-
tality. Effect estimates were available in 18 studies for PM2.5, 25
studies for NO2, and 19 studies for SO2. Nearly all of the stud-
ies controlled for seasonality and weather, while approximately
half of the studies controlled for regional trends of influenza.
Most of the time series studies controlled for long-term trends
with smoothing splines and several also controlled for the day
of week and holidays. Six of the case-crossover studies used
a time-stratified control-sampling strategy, while two followed
bidirectional control sampling (63).

Air pollution and COPD-related morbidity

All the three pollutants were positively associated with COPD-
related morbidity (as ED or HA), with excess risks ranging from
2% to 4% per 10 ug/m3 increase in concentration (Figure 2).
For PM2.5, we estimated an RR of 1.025 (95% CI 1.016–1.034)
per 10 ug/m3 in concentration using multi-day averages (I2 =
74, Q = 22.6, p<0.001, and n = 9 studies). When using single-
day lags, we found a slightly weaker but still positive associa-
tion with COPD-related morbidity (RR = 1.014, 95% CI 1.005–
1.024) (Table 2). For NO2, we estimated an RR of 1.042 (95%
CI 1.025–1.060) per 10 ug/m3 in concentration using multi-day
averages (I2 = 96, p-value for Q test <0.001, and n = 9 studies).
Similar to PM2.5, we found a slightly weaker but positive asso-
ciation for NO2 when using single-day lags (RR = 1.020, 95%
CI 1.006–1.031). For SO2, we estimated an RR of 1.021 (95%
CI 1.007–1.035) per 10 ug/m3 increase in concentration using
single-day lags (I2 = 87, p-value for Q test <0.001, and n = 11
studies). In contrast to PM2.5 and NO2, we found a weaker albeit
still significantly positive association for SO2 when using multi-
day averages (RR = 1.012, 95% CI 1.000–1.023).

In general, we found slightly stronger effect estimates for
COPD-related morbidity (ED and HA) when using multi-day
averages for both PM2.5 and NO2. For SO2, the reverse pat-
tern was observed. The use of the strongest effect estimate avail-
able in each study produced similar results for each pollutant,
suggesting that authors may preferentially report the strongest
effects. Using the strongest effect estimates per study, we esti-
mated an RR of 1.02 (95% CI 1.00–1.04) for PM2.5, an RR of 1.03
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Table . Summary of studies included in meta-analysis.

Pollutants

Study Region SO NO PM. Design Period Outcome Covariates included in modeling

Anderson et al. () Europe∗ √ √
TS† – Hosp A,B,C,D,E,F,G

Arbex et al. () Brazil
√ √

TS – ED A,B,C,D,E
Belleudi et al. () Italy

√
CC – Hosp C,D,G,H

Chen et al. () Canada
√

TS – Hosp C, D
Cirera et al. () Spain

√ √
TS – ED A,B,C,D,E,F,G, H

Domincini et al. () USA∗ √
TS – Hosp A,B,C,D,E

Faustini et al. () Italy
√ √

TS – Mort A, C, E, G, H
Faustini et al. () Italy

√
CC – Hosp A,B,C,D,G,H

Fischer et al. () The Netherlands
√ √

TS – Mort A, B,C,D,E,F,G
Fusco et al. () Rome

√ √
TS – Hosp A, C, D, E, F, G

Garcia-Aymerich et al. () Spain
√ √

TS – Mort A, C, D, G, H
Halonen et al. () Finland

√ √
TS – ED A, C, D, E, F, G, H

Janssen et al. () The Netherlands
√

TS – Mort A, B, C, D, E, F, G
Kan et al. () Shanghai

√ √
TS – Mort A, B, C, D, E

Kloog et al. () USA∗ √
CC – Hosp B,C,D

Ko et al. () Hong Kong
√ √ √

TS – Hosp A,B,C,D,E,F
Lee et al. () Taiwan

√ √
CC – Hosp C,D

Martins et al. () Brazil
√ √

TS – ED A,C,D,E,H
Meng et al. () China∗ √ √

TS† – Mort A,C,D
Milutinovic et al. () Serbia

√
TS  ED A,B,C,D,E

Morgan et al. () Sydney
√

TS – Hosp A,B,C,E,F,
Neuberger et al. () Austria

√ √
TS – Mort A,B,C,D,E,G

Peel et al. () Atlanta
√ √ √

TS – ED A,B,C,D,E,F,H
Qui et al. () Hong Kong

√
TS – Hosp A,C,D,E,F,G

Samoli et al. () Europe∗ √
TS† – Mort B,C,E,F,G,H

Santus et al. () Italy
√ √ √

CC – ED C,D
Sauerzapf et al. () UK

√
CC – Hosp C,G,H

Slaughter et al. () Washington
√

TS – ED B,C,D,E
Stieb et al. () Canada∗ √ √ √

TS† – ED A.B,C,D,E,F
Sunyer at al. () Spain

√
CC – Mort C,D,G

Tao et al. () China
√ √

TS – Hosp A,C,D,E,H
Tenias et al. () Spain

√ √
TS – ED A,B,C,D,E,F,G

To et al. () Canada
√ √

TS  ED&Hosp A,B,C,E,H
Tsai et al. () Tokyo

√
CC – Hosp C,D

Valdez et al. () Chile
√

TS – Mort A,B,T,D,E
Wong et al. () Hong Kong

√ √
TS – Mort A,B,C,D,E

Yang et al. () Vancouver
√ √

TS – Hosp C,D

Design: “TS”= time series and “CC”= case crossover
Outcome: “ED”= COPD-related emergency department visits, “Hosp”= COPD-related hospitalizations and “Mort”= COPD-related mortality
Covariates: A = time trends, B = seasonality, C = temperature, D = humidity and/or barometric pressure, E = day of week, F = holidays
G = influenza epidemics, H = other
∗Multiple cities were evaluated
†Results were pooled across multiple cities via meta-analysis methods (i.e., with random-effects model).

(95% CI 1.02–1.04) for NO2, and an RR of 1.02 (95% CI 1.01–
1.03) for SO2. Data are not shown.

Subgroup analyses: Morbidity and mortality

Differences between morbidity (including EDs and HAs) and
mortality outcomes were explored using the exposure category
that produced the strongest pooled effects. Pooled effects for
PM2.5 were two-fold higher for mortality (RR = 1.048, 95% CI
1.019–1.078, based on five studies) than for morbidity, measured
as ED or HA (RR = 1.025, 95% CI 1.016–1.034, based on ten
studies). Conversely, stronger effects were calculated for NO2
when evaluating morbidity (RR = 1.042, 95 CI 1.025–1.060,
based on nine studies) than for mortality (RR = 1.030, 95% CI
1.016–1.045, based on six studies). However, CIs were wide and
overlapping. We did not identify enough mortality studies to
investigate SO2 in this way.

As there were not enough studies to compare ED with HA
for each pollutant using the exposure metric that resulted in
the greatest combined effect, these outcomes were compared

using the strongest lag and averaging time across all studies.
For SO2, we found stronger effects for ED (RR = 1.041, 95% CI
1.004–1.0879, and n = 8 studies) than HA (RR = 1.010, 95% CI
1.002–1.019, and n = 7 studies). For NO2, however, the pattern
was reversed; ED showed a weaker effect (RR = 1.010, 95% CI
1.002–1.018, and n = 7 studies) than HA (RR = 1.045, 95% CI
1.029–1.061). For PM2.5, we estimated similar effects for both
outcomes; an RR of 1.023 (95% CI 1.002–1.043 and n = 5 stud-
ies) for ED and an RR of 1.019 (95% CI 0.998–1.041 and n = 10
studies) for HA.

Discussion

This meta-analysis is the first to our knowledge to quantify
the association between short-term exposures to NO2 and SO2
and COPD-related morbidity, with the exception of one meta-
analysis that focused specifically on studies among Chinese pop-
ulations (10). Positive associations were observed for each of
these gaseous pollutants, with significant excess risks estimated
between 2 and 4% per 10 ug/m3 increase in concentration. We
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Figure . Outdoor air pollution and COPD-related ED visits and HAs.

also estimated a significant 1.4–2.5% increased risk in COPD-
related ED and HA per 10 ug/m3 increase in PM2.5 (depend-
ing on selected exposure metric), which is slightly weaker but
within the same range as that reported in a recent meta-analysis
for PM2.5 (11). Li and colleagues estimated a 3% (95% CI 2–5%,
15 studies, I2 = 88%) increase in risk for COPD-related mor-
bidity per 10 ug/m3 increase in PM2.5 (11). This is slightly
stronger than our estimate and likely due to the selection of the
strongest effect estimate across all available lag and averaging
times for each individual study. As noted above, we believe that
this method may introduce bias; a better approach would be to
use consistent lags or averaging times for all studies combined
into a pooled effect estimate. We estimated pooled effects sepa-
rately for exposures based on single-day lags and multiple-day
averages and found that the strength of summary effects varied
by 50% or more depending on which exposure metric was used.
We hypothesize that this important source of variability may be

a function of a pollutant’s day-to-day variability and the biolog-
ical mechanism. Of the four meta-analyses found in the recent
literature that specifically focus on acute effects among COPD
patients from short-term exposures to outdoor air pollution
(8–11), none of them investigated the differences due to the use
of different exposure metrics. Our results highlight the sensitiv-
ity of pooled effect estimates to the choice of lag/averaging time.

Effects of PM2.5 and NO2 were stronger using multi-day aver-
ages compared with single-day estimates. The reverse pattern
was observed for SO2; the effect was stronger when exposure
was measured as a single-day lag rather than an average of sev-
eral days.

One possible reason for the observed differences in effect
estimates by exposure metric is the pollutants’ biological mech-
anisms. The mechanisms by which airway inflammation are
exacerbated following short-term exposures to outdoor air
pollution are not yet fully understood, although there are

Table . Comparison of pooled effect estimates by exposure metric.

Single-day lags Multi-day averages

Pollutant No. of studies Pooled effect estimate I statistic No. of studies Pooled effect estimate I statistic

PM.  . (.–.)   . (.–.) 
NO  . (.–.)   . (.–.) 
SO  . (.–.)   . (.–.) 

Only studies evaluating COPD-related emergency department visits (ED) and hospital admissions (HA) are included.
Summary effect estimates represent the relative risk of COPD-related ED/HA for a  ug/m increase in pollutant concentration.
I represents the percentage of total variability in summary effect estimates that is due to variability between studies.
The Q statistic tests the hypothesis of homogeneity among effect sizes with p < . suggesting heterogeneity between studies.
All results shown in this table had p < ..
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several reasonable hypotheses. PM exposures cause increased
airway hyper-responsiveness in rodents and production of reac-
tive oxygen and inflammatory factors in alveolar macrophages
in humans (9). Longer lag/averaging times are biologically plau-
sible for PM compared with gaseous pollutants considering
the proposed effect of particles on allergic sensitization and
lung immune defenses, which have been observed in controlled
human exposure and experimental animal studies (16). NO2
exposures can exacerbate existing respiratory disease by impair-
ing the functions of epithelial cells and alveolar macrophages,
contributing to airway inflammation (14). Similar to PM, this
process may be cumulative over days and therefore a longer time
period would be more relevant than the shorter period captured
by single-day lags. SO2, on the other hand, is a highly reac-
tive gas with a high degree of day-to-day variability (15). Bron-
choconstriction in healthy adult males has been observed after
short-term exposures to ambient levels of SO2 (64), as well as in
numerous animal studies (15). SO2 is also a well-known respira-
tory irritant, with acute respiratory symptoms reported imme-
diately upon exposure to elevated concentrations in controlled
human studies (15).

Mortality from COPD was about twice as strongly associated
with PM2.5 than morbidity (ED and HA) from COPD (RR =
1.050, 95% CI 1.015–1.087 for mortality and RR = 1.026, 95% CI
1.014–1.038 for morbidity). Li and colleagues recently reported
similar effects from short-term exposures of PM2.5 on COPD-
related morbidity and mortality (11). Zhu and colleagues, in a
meta-analysis of Chinese studies, reported the reverse pattern
for PM10 and acute COPD outcomes (8). There are a number
of reasons why this may have occurred. Firstly, PM10 and PM2.5
are different particle size fractions containing diverse chemical
components and moderated by meteorology, topography, and
human behavior in different ways (16). Secondly, the PM2.5 stud-
ies included in this meta-analysis are more recent (by nearly a
decade) than the PM10 studies evaluated (8). The stronger asso-
ciation that we found for PM2.5 and COPD-related mortality,
as compared with COPD-related ED-HA, may reflect improve-
ments in disease management over the past decade, whereby
patients are increasingly better at avoiding certain triggers and
taking care of themselves. This could result in decreased risk
of ED-HA through time, while the risk remains high for more
severe outcomes like mortality. This discrepancy may also be
due to differences in the study populations or geographic regions
represented in our studies. For example, a recent meta-analysis
quantifying the association between PM and mortality reported
higher risk of mortality among elderly and those with a lower
socioeconomic status compared with younger, wealthier, and
more educated populations (65). Finally, this difference may be
due to differences in the rationale for selecting individual effect
estimates from eligible journal articles by Zhu and colleagues
and as we have done in this paper.

This study also found the stronger effects of SO2 on COPD-
related ED than HA. These results are consistent with a recent
study that compared ED and HA data from air pollution time
series studies for various diseases (i.e., respiratory disease, car-
diovascular disease, and pneumonia.) (66). Researchers esti-
mated slightly higher risk ratios for respiratory disease-related
ED than HA and attributed this to differences in the types of
patients typically experiencing these visits; patients for ED were

often younger, from poorer areas, and with less severe illness
(66). Researchers also mentioned that HAs typically include
scheduled visits, where the timing is unlikely to be caused by
air pollution, which could mislead and/or dampen results (66).
We did not, however, find the same trend for exposures to PM2.5
and NO2.

Limitations

Heterogeneity and bias are two important limitations to dis-
cuss in the context of this meta-analysis. While we investigated
several importance sources of heterogeneity through stratum-
specific pooled effects with a random-effects model, there was
still likely to have been substantial variation between studies.
This is reflected in high estimates of between-study variance (as
represented by I2, shown in Table 2), most of which were greater
than 80%. Due to sample size limitations, we were not able to
investigate the important differences in study design, geography,
air chemistry, meteorology, and population health characteris-
tics. We were also not able to investigate the impacts of different
exposure metrics on the effect estimates for mortality due to the
limited number of available studies.

Due to the limited number of studies available within strata
and the large number of results presented in each article, we were
also not able to formally evaluate publication bias in a mean-
ingful way. If positive studies were more likely to have been
published, these results may have been biased away from the
null. Bias could also occur within published studies if authors
only chose to present the strongest effect estimates. We tried to
avoid this by mostly including studies that focused specifically
on COPD and therefore explored/presented results from various
lag/averaging times for this particular population. We intention-
ally kept our search criteria in PubMed and Medline quite spe-
cific to capture studies specifically focused on COPD outcomes
and exclude the larger scope time series studies that investigate
all causes of ED, HA, and mortality but often only present results
with the strongest effect estimates and/or highest level of statis-
tical significance. Inclusion of estimates from such studies could
be misleading and bias results away from the null hypothesis.

Finally, it is important to remember that meta-estimates of
the effects of pollutants on COPD necessarily represent single-
pollutant models, while of course the COPD populations are
breathing urban air containing all these pollutants and several
other pollutants. Thus, these estimates represent simplifications
of the true impacts of urban air pollution on existing COPD.

Conclusion

A comprehensive meta-analysis can help researchers recognize
and understand inconsistencies among studies, especially where
available studies report varying associations for the same expo-
sure and health outcome. In this study, we found consistently
positive associations between PM2.5, NO2, and SO2 and COPD-
related morbidity and mortality. Although there was important
variability among study results, they varied within a relatively
narrow range. Excess risks were estimated at approximately 2–
3% (per 10 ug/m3), regardless of pollutant, exposure metric, or
COPD outcome. Looking specifically at COPD-related morbid-
ity, 23 of the 25 individual effect estimates were positive and 70%
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had 95% CIs excluding the null (Figure 2). This is a strong body
of evidence for outdoor concentrations of particulates (PM2.5)
and gaseous pollutants (NO2 and SO2) as important risk factors
for COPD.

This study identified some of the key challenges associ-
ated with synthesizing diverse air pollution literature and the
implications that certain study design decisions have on meta-
analyses. More specifically, this study identified the sensitiv-
ity of these findings to the lag/averaging times for pollutants
used in the air pollution–COPD literature. There are no agreed
upon standards for how exposure data should be summarized
for epidemiological studies. In the absence of strong biologi-
cal evidence, it would be difficult to set such standards. In the
meantime, researchers are urged to clearly define and present
exposure–response estimates using several alternative exposure
metrics so that meta-analysts can investigate the effects of alter-
native metrics, as we have reported here.
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Appendix 1

Summary of studies included in meta-analysis.

SO NO PM.

Study Region
Average conc.

(ug/m)

Selected
single-day

lag

Selected
multi-day
Average

Average conc.
(ug/m)

Selected
single-day

lag

Selected
multi-day
Average

Average conc.
(ug/m)

Selected
single-day lag

Selected
multi-day
Average

Anderson et al.
()

Europe –  – –  – — — —

Arbex et al. () Brazil   — — — — — — —
Belleudi et al.

()
Italy — — — — — — .  –

Chen et al. () Canada — — — — — — .  –
Cirera et al. () Spain   —   — — — —
Domincini et al.

()
USA — — — — — — .  –

Faustini et al.
()

Italy — — —  — – . — –

Faustini et al.
()

Italy — — — –  – — — —

Fischer et al. () The
Netherlands

∗ — — ∗ — – — — —

Fusco et al. () Rome .  —   — — — —
Garcia-

Aymerich
et al. ()

Spain –∗ — – –∗ — –

Halonen et al.
()

Finland — — — ∗  .∗  —

Janssen et al.
()

The
Netherland

— — — — — — .  –

Kan et al. () Shanghai  — —   — — — —
Kloog et al. () USA — — — — — —  — –
Ko et al. () Hong Kong   –   –   –
Lee et al. () Taiwan  — –  — – — — —
Martins et al.

()
Brazil  — –  — – — — —

Meng et al. () China – — – – — – — — —
Milutinovic

et al. ()
Serbia   – — — — — — —

Morgan et al.
()

Sydney — — —   — — — —

Neuberger et al.
()

Austria — — —  — –  — –

Peel et al. () Atlanta  — –  — –  — –
Qui et al. () Hong Kong — — — — — — . — –
Samoli et al. () Europe — — — — — — – — –
Santus et al. () Italy .  –   – .  –
Sauerzapf et al.

()
UK — — —   — — — —

Slaughter et al.
()

Washington — — — — — — .–  —

Stieb et al. () Canada .–  — –  — .–.  —
Sunyer at al. () Spain — — —   — — — —
Tao et al. () China   —   —
Tenias et al. () Spain   —   — — — —
To et al. () Canada — — —   —   —
Tsai et al. () Tokyo — — — — — —  — –
Valdez et al. () Chile — — — — — — ∗  –
Wong et al. () Hong Kong  — —  — – — — —
Yang et al. () Vancouver .  –   – — — —

∗Value represents median concentration.
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