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REVIEW ARTICLE

Immune mechanisms of group B coxsackievirus induced viral myocarditis
Yue Zhang a,b*, Xiaobin Zhoua*, Shuyi Chena, Xinchen Suna, and Chenglin Zhoua

aClinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China; bSchool of public 
health, Nantong University, Nantong, China

ABSTRACT
Viral myocarditis is known to be a primary cause of dilated cardiomyopathy (DCM) that can lead to heart 
failure and sudden cardiac death and is invariably caused by myocardial viral infection following active 
inflammatory destruction of the myocardium. Although acute viral myocarditis frequently recovers on 
its own, current chronic myocarditis therapies are unsatisfactory, where the persistence of viral or 
immunological insults to the heart may play a role. Cellular and mouse experimental models that 
utilized the most prevalent Coxsackievirus group B type 3 (CVB3) virus infection causing myocarditis 
have illustrated the pathophysiology of viral myocarditis. In this review, immunological insights into the 
different stages of development of viral myocarditis were discussed, concentrating on the mechanisms 
of innate and adaptive immunity in the development of CVB3-induced myocarditis.
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Introduction

Viral myocarditis refers to the occurrence of inflamma-
tory lesions in the myocardial tissue due to viral infection 
[1]. Although people of all ages, races, and genders are 
susceptible to contracting viral myocarditis, with the inci-
dence varies from 10 to 22 per 100,000 people, this disease 
is most prevalent among adolescents and is quickly over-
taking heart attacks as the primary cause of sudden car-
diac death in youth [2]. Patients with viral myocarditis 
have a good chance of fully recovering; nonetheless, up to 
20% of those infected will develop dilated cardiomyopa-
thy (DCM) and heart failure [3–5]. Myocarditis spurred 
on by a virus had a 19.2% mortality over 4.7 y, with 9.9% 
of those deaths being caused by heart collapse [6].

Viral myocarditis progression is greatly influenced by 
immune responses [7]. Generally, viruses such as 
Coxsackievirus and Erythrovirus induce the production 
of cytokines following tissue damage, which is then 
followed by the infiltration of immune cells via conco-
mitant pro-inflammatory and pro-fibrotic cytokine gen-
eration [8–10]. The progression of viral myocarditis may 
be roughly thought of as having three distinct stages. 
The primary stage is viral myocarditis, where the virus 
enters the host and is transported to the myocardium, 
thereby activating innate immunity [11]. The second 
stage is autoimmune myocarditis, in which adaptive 
immunity is triggered [12]. The third stage of viral 
myocarditis, distinguished by persistent inflammation 

and DCM, enhances if the virus is not entirely elimi-
nated in the previous two stages [13]. Accordingly, the 
present review attempts to outline the research status 
pertaining to the relevant immune mechanisms of viral 
myocarditis based on the three developmental stages.

Triggers of myocarditis

Infectious pathogens, such as viruses and bacteria, as well 
as non-infectious elements including autoimmune dis-
eases and chemical factors, can trigger myocarditis 
(Figure 1). Among them, viral infection is considered to 
be the most common cause of myocarditis, accounting for 
50–70% of all cases in developed countries such as the 
United States and Europe [14,15]. Enteroviruses, espe-
cially Coxsackievirus, Herpesviruses, Erythroviruses, 
Adenoviruses, Influenza A, HIV, and Hepatitis viruses 
have received considerable research attention [16,17]. 
Coxsackievirus group B type 3 (CVB3) is a non- 
enveloped, positive-sense, single-stranded RNA virus 
belonging to the Enterovirus family [18]. CVB3 is sphe-
rical in shape, 22–30 nm in diameter, with a genome 
length of 7.4 kb. The nucleocapsid of CVB3 consists of 
four proteins, VP1, VP2, VP3, and VP4, which infect host 
cells by binding to (coxsackievirus and adenovirus recep-
tor) CAR/CD55/(decay accelerating factor) DAF on the 
host cell membrane, resulting in the exposure of VP4 and 
VP1 proteins hidden inside the nucleocapsid to the viral 
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surface and facilitating the wrapping and absorption of 
CVB3 by the host cell membrane [19,20]. There is sub-
stantial evidence that young adults and children are more 
vulnerable to CVB3-induced myocarditis. Furthermore, 
CVB3 is known to be the most extensively studied virus in 
both patients and animal models with myocarditis [21]. 
Over the past two decades, human herpesvirus 6 (HHV- 
6) has been associated with paediatric cardiomyopathy 
and DCM [22]. Parvovirus B19 (PVB19), a member of 
Erythroviruses, has also been reported in the paediatric 
population, which may lead to heart failure with high 
mortality [23]. Notably, HHV-6 and PVB19 have increas-
ingly supplanted Coxsackievirus and Adenoviruses as the 
most frequently recognized viruses in viral myocarditis 
and DCM. Influenza A is an RNA virus belonging to the 
Orthomyxoviridae family that can evolve to myocarditis, 
where patients may manifest with palpitation, fever, 
shortness of breath, myalgia, and collapse [24]. Recent 
studies have demonstrated that severe acute respiratory 
syndrome coronavirus 2, which causes Coronavirus dis-
ease-19, may also give rise to myocarditis [25,26]. Thus, in 
order to study the pathogenesis of viral myocarditis, 
a model of CVB3 infection is usually used.

Stages of CVB3-induced myocarditis

CVB3-induced myocarditis can be classified into three 
stages according to its pathogenesis: viral myocarditis, 
autoimmune myocarditis, and DCM. During the viral 

myocarditis stage, CVB3 enters into myocytes and acti-
vates the host’s innate immunity, which is usually self- 
limiting. In autoimmune myocarditis, CVB3 enters into 
acute injured myocytes in order to replicate and induce 
myocardial infarction, thereafter activating adaptive 
immunity, which can be life-threatening [27]. 
Persistent inflammation of the myocardium leads to 
myocardial remodelling, which eventually develops into 
DCM and may give rise to cardiac fibrosis and trigger 
a decline in cardiac function, heart failure, and even 
death (Figure 2). As numerous immune cells and mole-
cules are involved in each stage of viral myocarditis, the 
immune mechanisms of CVB3-induced myocarditis at 
different stages will be, respectively, explained.

Viral myocarditis stage

Innate immunity is dominant during the viral myocardi-
tis stage, in which the host activates innate immune cells 
via recognition of pathogen-associated molecular patterns 
(PAMPs) and damage-associated molecular patterns 
(DAMPs) through pattern recognition receptors (PRRs) 
following viral infection [28]. Among them, PRRs (Toll- 
like, NOD-like, and AGE receptors) activate immune cells 
via signal transduction in order to produce and secrete 
pro-inflammatory and antiviral cytokines, while natural 
killer (NK) cells are directly involved in the killing of 
virally infected cells and secreting cytokines through 

Figure 1. Triggers of myocarditis. Myocarditis can be induced by both infectious and non-infectious pathogens, with viral infection 
being the most common cause (red background).

2 Y. ZHANG ET AL.



PRRs, as well as their surface-specific receptors, natural 
killer cell receptors [29–32].

Toll-like receptors (TLRs)
TLRs belong to membrane-bound PRRs, in which 
TLR3, TLR7, TLR8, and TLR9 recognize viral nucleic 
acid, while TLR2/4 recognize viral envelope protein 
[33,34]. A majority of TLRs activate myeloid differen-
tiation factor 88 (MyD88)-related pathways, whereas 
others, including TLR3 rely on the TIR-domain- 
containing adapter-inducing interferon-β (TRIF) path-
way [35–37]. Specifically, TLR4 can simultaneously 
initiate both the MyD88 and TRIF pathways.

TLR3, which is mainly expressed on the endosomal 
membrane, induces the expression of antiviral cytokine 
IFN-γ [38]. Studies on adiponectin−/− and wild-type 
(WT) mice have shown that CVB3 can trigger innate 
immunity by combining the CD14-TLR complex. 
Increased expression of CD14 and proinflammatory 
cytokines has also been seen in adiponectin-deficient 
mice infected with CVB3. In addition, incubation with 
TLR3 agonists has been reported to stimulate IFN 
expression in cardiomyocytes, whereas the addition of 
adiponectin has been shown to suppress this produc-
tion [39]. These results indicate the importance of 
adiponectin in promoting the progression of viral myo-
carditis via inhibition of the TLR3-mediated innate 
immune response. Studies on protease activated recep-
tor (PAR)2 and viral myocarditis have shown that IFN- 
β expression and signal transducer and activator of 
transcription (STAT)1 phosphorylation are elevated in 

PAR2−/− cardiac fibroblasts (CFs) compared to that of 
PAR2+/+ CFs after CVB3 infection. Meanwhile, STAT1 
phosphorylation of PAR2 overexpressed CFs has been 
shown to be significantly decreased following PAR2 
and TLR3 agonist stimulation, suggesting that PAR2 
negatively regulates TLR3-dependent IFN-β production 
and promotes viral myocarditis [40]. Antoniak et al. 
found that PAR1−/− mice expressed reduced levels of 
IFN-β and C-X-C motif chemokine ligand (CXCL)10 
compared to that of PAR1+/+ mice, while PAR1 and 
TLR3 co-enhanced phosphorylation of p38 and pro-
duction of IFN-β and CXCL10 in mice CFs. These 
findings suggest that PAR1 positively regulates the pro-
duction of IFN-β and CXCL10 through TLR3-p38 in 
order to improve viral myocarditis [41]. From what we 
can gather from the aforementioned research, TLR3 is 
primarily responsible for mediating IFN production 
and exhibits an antiviral role in viral myocarditis.

TLR4 is abundantly found in the human heart and is 
primarily membrane-expressed [42]. Recent studies have 
found that CVB3 infection upregulates TLR4 expression 
on the cell membrane [43]. As proposed by Rienks et al., 
a novel 72-kDa osteoglycin (iOGN) was expressed on 
circulating innate immune cells and cardiac myocytes, 
and iOGN co-immunoprecipitated with TLR4 in lysates 
of human peripheral leukocytes and bone marrow-derived 
macrophages (BMDMs). Following LPS stimulation, the 
expression levels of MyD88, p-PI3K, and p-cjun in iOGN−/ 

− BMDMs from mice have also been shown to be lower 
than that in iOGN+/+ BMDMs, indicating that iOGN on 
innate immune cells promotes the development of viral 
myocarditis through the activation of the TLR4-MyD88- 
mitogen-activated protein kinase (MAPK) pathway [44].

TLR7 is mostly expressed on the endoplasmic reticu-
lum membrane [45]. Moreover, interleukin-1 receptor- 
associated kinase 4 (IRAK4), which is a downstream 
molecule of MyD88, plays an important role in pro- 
inflammatory cytokine production for the stimulation 
of TLR2, TLR4, TLR7/8, TLR9 in macrophages and 
myeloid dendritic cells [46]. Valaperti et al. found that 
after CVB3 infection, TLR7-stimulated IRAK4−/− mice 
exhibited significantly upregulated STAT5 phosphoryla-
tion and enhanced IFN-α and IFN-β expression com-
pared with that of IRAK4+/+ mice, indicating that IRAK4 
accelerates viral myocarditis progression by inhibiting 
TLR7-mediated IFN production [47].

TLR8 is mainly expressed on the endoplasmic reticu-
lum membrane of myeloid dendritic cells, monocytes/ 
macrophages, and neutrophils [48]. Rivadeneyra et al. 
reported that human neutrophils internalized and recog-
nized CVB3 through endosomal TLR8 and then trig-
gered NF-κB signalling, resulting in the upregulation of 
CD11b, strengthening of the adhesion to fibrinogen and 

Figure 2. Temporal stages of CVB3-induced myocarditis. The 
first stage occurs when the virus enters into the host and 
translocates to the myocardium, causing various cellular 
responses and activating the host’s innate immunity for 1–7 d 
(green solid curve). The cellular and humoral responses lead to 
autoimmune-mediated damage in the second stage, with 
T lymphocyte infiltration cresting at 7–14 d, which typically 
lasts 7–28 d (blue solid curve). In certain patients, the inflam-
mation fades as myocardial damage diminishes; nevertheless, in 
others, the virus stays in the body for months or years, giving 
rise to chronic inflammation and DCM (the third stage, red 
dotted curve).
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fibronectin, and increase in secretion of IL-6, IL-1β, 
TNF-α, and IL-8, which suggests that neutrophils inhibit 
viral myocarditis development through TLR8 [49].

MyD88 is a protein that plays a prominent part in the 
conventional TLR signal transduction pathway, activating 
transcription factors NF-κB and AP-1 via protein kinases 
[50]. Shi et al. found that CVB3 cleaved sequestosome 1 
(SQSTM1, p62) through viral protease 2Apro, making it 
unable to interact with ubiquitinated proteins and disrupt-
ing selective autophagy. Furthermore, SQSTM1 has been 
shown to lose the ability to activate NF-κB signalling, lead-
ing to the further development of viral myocarditis [51].

In contrast to majority of TLRs, which utilize the 
MyD88 pathway to transduce signals, fractional TLRs 
utilize MyD88-independent pathway, namely the TRIF 
pathway, which commences with TRIF activation of 
IRF-3 and IRF-7 and culminates in IFN-I production 
[52]. Liu et al. investigated a tripartite motif-containing 
(TRIM)21 and found that TRIM21 expression in the 
heart of CVB3-infected mice was upregulated, while 
mRNA expression of IFN-α and IFN-β was shown to 
be significantly increased in TRIM21-overexpressed cells 
infected with CVB3, which was promoted by IRF3 
dimerization and phosphorylation [53]. The correspond-
ing findings suggest that TRIM21 positively regulates the 
IFN-I pathway via promotion of IRF3 activation and 
inhibition of viral myocarditis progression.

NOD-like receptors (NLRs)
NLRs, which consist of C-terminal leucine-rich repeat, 
nucleotide-binding domain, and N-terminal effector 
domain, are located in the cytosol and act as intracel-
lular PRRs [54]. According to the N-terminal effector 
domain, NLRs are classified into five subfamilies: 
NLRA, NLRB, NLRC, NLRP, and NLRX. A part of 
NLRs, in conjunction with the adaptor protein apopto-
sis-associated speck-like protein containing a CARD 
(ASC) and effector caspase-1, form the inflammasome 
and initiate the inflammatory response [55].

Wang et al. found that the expression of IL-1β, as 
well as the inflammasome components ASC and cas-
pase-1, is upregulated in the cardiac tissue of CVB3- 
infected mice. Meanwhile, IL-1β level was shown to be 
downregulated with caspase-1 inhibitor, while symp-
toms of mice myocarditis were observed to be alleviated 
following the use of neutralizing antibody against IL- 
1β, which suggests that CVB3-induced inflammasome 
activation plays a role in viral myocarditis through the 
regulation of IL-1β production. Meanwhile, they also 
found that potassium efflux and reactive oxygen species 
(ROS) were indispensable for NLRP3 inflammasome 
activation [56]. In addition, Bao et al. demonstrated 
that the expression of NLRP3 and IL-1β was 

upregulated in the cardiac infiltrating macrophages of 
CVB3-infected mice. Here, CVB3 is shown to trigger 
macrophage NLRP3 activation and upregulation with 
CVB3 capsid viral proteins VP1 and VP2 instead of 
viral RNAs [57].

AGE receptors (RAGEs)
RAGE is a distinct type of PRR implicated in a variety 
of pathological processes, which also regulates inflam-
matory cell migration and oxidative stress [58].

Muller et al. discovered that CVB3-infected mice 
had increased S100 calcium-binding protein (S100)A8 
and S100A9 expression and myocardial dysfunction; 
however, CVB3-infected S100A9−/− mice exhibited 
decreased RAGE and diaphanous-1 (Dia-1) adaptor 
mRNA expression compared with that of CVB3- 
infected WT mice. Meanwhile, the myocardial function 
of CVB3-infected S100A9−/− mice had a similar recov-
ery process to WT mice when supplemented with 
S100A8. These findings suggest that CVB3 infection 
leads to the elevation of DAMPs S100A8 and S100A9 
expression, which enhances the inflammatory response 
via RAGE/Dia-1 pathway [59].

NK cell receptors (NCRs)
NCRs, including NKp46, NKp30, and NKp44, consti-
tutively expressed on NK cells, activate cytolytic func-
tions of NK cells in viral clearance and host immunity 
[60,61]. The transcription factor forkhead box (Fox)o3 
has been described to be involved in cell metabolism, 
oxidative stress, and inflammatory disease [62]. Loebel 
et al. found that CVB3-infected Foxo3−/− mice had 
increased expression of IFN-γ and NKp46 as well as 
a higher proportion of CD11b+CD27+ NK cells. 
Moreover, they were found to have enhanced CD69 
expression on NK cells with higher cytotoxicity, sug-
gesting that Foxo3 plays a critical role in innate immu-
nity through the regulation of NK cell function by 
NKp46 in CVB3 infection [63].

Autoimmune myocarditis stage

The autoimmune myocarditis stage is strongly influ-
enced by adaptive immunity. Due to the cytolytic prop-
erties of CVB3 virus, intracellular and surface antigens 
are released from the heart, where newly released anti-
gens activate T and B lymphocytes, triggering autoim-
mune responses. In this stage, antigen-presenting cells 
(APCs) represent the viral or host antigens and activate 
CD4+ T cells in order to differentiate into Th cell 
subsets while secreting cytokines [64]. Th cells then 
assist B cells in secreting specific antibodies to neutra-
lize the virus or the host antigens with co-stimulatory 
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molecules and cytokines while activating CD8+ T cells 
to differentiate into cytotoxic T lymphocytes (CTLs) to 
kill virally infected cells [65].

CD4+ T cells
CD4+ T cells are activated by the complex formed by 
antigenic peptides and MHC class II molecules, 
which are mainly differentiated into four subsets: 
Th1, Th2, Th17, and Treg. Th1 and Th17 cells 
mostly play pro-inflammatory roles, while Th2 and 
Treg cells have predominantly anti-inflammatory 
roles. Multiple investigations have confirmed that 
the proportion and differentiation of CD4+ Th cells 
are closely related to the development of viral myo-
carditis [66].

Th1 and Th17 cells. The hallmark cytokine produced 
by Th1 cells is IFN-γ. The transcription factor 
involved in Th1 cell differentiation has been shown 
to be T-bet, in which STAT1 and STAT4 regulate the 
secretion of IFN-γ and IL-12, respectively. Meanwhile, 
the hallmark cytokine produced by Th17 cells is IL-17, 
while the specific transcription factor of Th17 cells is 
retinoic acid receptor-related orphan receptor γ 
(RORγT), where STAT3 induces RORγT expression 
[67,68].

Long et al. illustrated that CVB3 entered into CD4+ 

T cells and showed that Th17 cell proportion, IL-17 
secretion, and RORγT synthesis increased after purified 
CD4+ T cells were transfected with CVB3 [69]. 
Meanwhile, Yuan et al. discovered that in mice infected 
with CVB3, the frequency of splenic Th17 cells, IL-17 
mRNA, RORγT, and cardiac CVB3 RNA were all 
increased. However, CVB3 RNA was shown to be sup-
pressed following the neutralization of IL-17 [70]. The 
above studies suggest that IL-17 produced by Th17 cells 
promotes CVB3 replication and augments the severity 
of viral myocarditis.

Wei et al. transferred purified IL-10+ B cells from 
WT mice and CVB3-infected mice into B cell- 
deficient mice with viral myocarditis, demonstrating 
that splenic Th1 and Th17 cell proportions, cardiac 
T-bet, and RORγT mRNA from CVB3-infected mice 
were significantly lower than those from WT mice. 
These findings suggest that IL-10+ B cells downregu-
late the proportions of Th1 and Th17 cells in CVB3- 
infected mice [71]. Li et al. showed that plasma and 
cardiac progranulin were increased in CVB3-infected 
WT mice, and viral myocarditis was exacerbated in 
CVB3-infected progranulin−/− mice with high levels 
of splenic and cardiac Th1 and Th17 cell proportion, 
which were also evident in serum levels of IFN-γ, 
TNF-α, IL-17A, and IL-21. Moreover, p-Janus 

kinases (JAK)2, p-STAT4, p-JAK3, and p-STAT3 
were found to be decreased when purified mouse 
CD4+ T cells were co-incubated with progranulin, 
indicating that progranulin inhibits Th1 and Th17 
cell differentiation via JAK/STAT pathway in viral 
myocarditis [72].

Th2 and Treg cells. The specific transcription factors 
of Th2 and Treg cells are GATA binding protein 3 
(GATA3) and Foxp3, respectively, where STAT6 serves 
as an essential component in Th2 differentiation, and 
STAT5 is vital in Treg signalling [68].

Zhou et al. activated the cholinergic anti- 
inflammatory pathway (CAP) in CVB3-infected mice 
and found that splenic GATA3 and Foxp3 expression 
was induced, while that of T-bet and RORγT was 
reduced. Meanwhile, Th2 and Treg cell proportions 
were shown to be increased, Th1 and Th17 cell propor-
tions were decreased, and the survival rate of CVB3- 
infected mice was elevated, demonstrating that CAP 
ameliorates viral myocarditis via regulation of Th cell 
differentiation into Th2 and Treg cells [73].

CD8+ T cells
IL-21 is a Th17-derived cytokine that signals via IL-21  
R in order to mediate the activation, proliferation, and 
cytotoxic activity of CD8+ T cells [74]. Liu et al. found 
that the severity of CVB3-infected IL-21 R−/− mice was 
significantly alleviated, in which the number of CD8+ 

IFN-γ+ T cells was found to be decreased, though the 
number of CD4+ T cells remained unchanged. CVB3- 
infected CD8−/− mice had attenuated myocarditis 
symptoms when transferred with CD8+ T cells from 
WT mice instead of IL-21 R−/− mice, suggesting that IL- 
21 R signalling regulates viral myocarditis via activation 
of CD8+ T cells [75].

B cells
Aside from their more well-known functions as the 
secretion of antibodies, B cells also play significant 
roles in antigen delivery and regulation of T cell 
immunity [76,77]. CVB3 virus and the host overlap 
antigenic epitopes, where B cells secrete antibodies 
against viral antigens, causing the cross-reactivity 
with autoantigens and leading to autoimmunity [78]. 
On the contrary, B cells also play roles in regulating 
Th cell differentiation in CVB3-induced myocarditis. 
Mice deficient in B cells that were subsequently 
infected with CVB3 were created by Cent et al. They 
found that Th1 and Th17 cell differentiation was sup-
pressed, while Th2 cell differentiation was boosted and 
cardiac damage was minimized, implying that B cells 
have distinctive pathogenic functions in viral 
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myocarditis independent of T cells [79]. Similarly, 
when Lu et al. eliminated B cells in CVB3-infected 
mice, they discovered a comparable reduction in the 
spleen, blood, and heart Treg cells, as well as 
a reduction in splenic Treg cell activation and immu-
nological activity, and a reduction in myocardial TGF- 
β and Foxp3 transcript levels. This suggests that 
B cells, in addition to their pro-inflammatory activity 
in viral myocarditis, also play crucial roles in main-
taining Treg cell homoeostasis [80]. Additionally, 
a study by Li et al. found that knocking out B cells 
in CVB3-infected mice lowered myocardial case scores 
and increased the M2 macrophage proportion, 
whereas after reconstitution of B cells, the M2 

macrophage proportion decreased, indicating that 
B cells promote viral myocarditis progression by inhi-
biting M2 polarization [81].

DCM stage

Incomplete CVB3 clearance and persistent chronic 
inflammation may lead to DCM, which is characterized 
by fibrosis and cardiac remodelling [82]. Cardiac 
macrophages and fibroblasts produce IL-6, which is 
crucial for myocarditis exacerbating into DCM, while 
IL-6 inhibition reduces angiotensin II-induced cardiac 
fibrosis [83]. Kraft et al. found that in CVB3-infected 
mice, the expression levels of extracellular regulated 

Figure 3. The immune mechanisms in the development of CVB3-induced myocarditis. Viral myocarditis is attributed to a combination of 
viral and host factors in vulnerable people. As viruses replicate, they trigger a cascade of PRRs (TLRs, NLRs, RAGEs) that are essential for 
activating immune cells and mediating the production of cytokines; simultaneously, NK cells directly destroy virally infected cells. In some 
cases, the virus will be eradicated during this process; otherwise, it can progress to chronic myocarditis or DCM with adaptive immunity 
engaged. The release of viral antigens is then followed by delivery through APCs (e.g. dendritic cells) that activate CD4+ T cells to develop 
into distinct subsets and secrete cytokines, whereas CD8+ T cells differentiate into CTLs that lyse virally infected cells. B cells secrete 
antibodies, and with the induction of anti-viral T cells and antibody responses, the infectious virus may be eradicated. After viral lysis of the 
infected cells, intracellular proteins (i.e. cardiac myosin) or cryptic epitopes (i.e. host antigens), are released and presented by APCs to CD4+ 

T cells, CD8+ T cells and B cells, which mediate inflammation through the secretion of cytokines, cytolysis, and production of 
autoantibodies, respectively, triggering an autoimmune response that in turn infiltrates the heart and exacerbates inflammation. 
Eventually, if the virus clears, the myocardium can revert to normal, but delayed or ineffective viral clearance generates myocyte 
degeneration, interstitial fibrosis, hypertrophy, and DCM.
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protein kinase (ERK)1/2, extracellular matrix (ECM), 
and fibrosis-related molecules such as TGF-β and 
matrix metalloproteinase (MMP)12 were increased; 
however, the expression of ERK1/2, IL-6 and the 
above molecules were noted to be decreased when 
treated with IL-1β neutralizing antibody in the mouse 
model. Furthermore, cardiac injury and fibrosis were 
mitigated, suggesting that IL-1β influences the expres-
sion of ECM and fibrosis-related molecules, cardiac 
remodelling and DCM via regulation of ERK1/2 and 
IL-6 [84]. Liu et al. induced DCM mice with CVB3 and 
found that the expression of pro-inflammatory cyto-
kines IL-1β, IL-6, TNF-α, IFN-γ was upregulated in 
the hearts of DCM mice, with cardiac fibrosis being 
aggravated. Moreover, CVB3-induced expression of 
these cytokines was suppressed in mice treated with 
astragalus polysaccharide, which played a protective 
role against cardiac fibrosis [85]. Upregulation of IL-6 
mRNA levels in myocardial tissues was observed in 
DCM mice, as reported by Li et al. Following IL-6 
knockdown in DCM mice, myocardial apoptosis and 
cardiac remodelling were suppressed, as was the pro-
duction of fibrosis indicators such as collagen type 
(COL)1-A1 and collagen type (COL)III-A1. This was 
consistent with a reduction in STAT3 phosphorylation, 
demonstrating that IL-6-mediated STAT3 signalling 
pathway induces myocardial apoptosis and cardiac 
remodelling [86]. Furthermore, Li et al. found that 
human cardiac fibroblasts produced large amounts of 
IL-6 and IL-8 with stimulation of TLR2 and TLR4, and 
that cardiac infiltrated immune cells show an uncon-
trolled response, which further deteriorated cardiac 
function, damaged cardiac tissues and caused DCM 
[87]. A study by Guo et al. further demonstrated that 
CVB3-induced DCM was protected by IL-22- 
producing Th22 cells, illustrating that splenic Th22 
cell numbers, plasma IL-22 levels, and myocardial IL- 
22 R expression were all elevated in the mice with 
DCM. While a neutralizing antibody against IL-22 led 
to increased COL1-A1, COL3-A1, MMP9 expression, 
and intensified myocardial fibrosis in DCM mice, sug-
gesting that IL-22 protects the myocardium by inhibit-
ing myocardial fibrosis [88].

Conclusions and remarks

The most prevalent cause of viral myocarditis is viral 
infection, which is typically self-limiting but can 
develop into autoimmune disorders that may be life- 
threatening in extreme cases, particularly during young 
adulthood. CVB3 is a cytolytic virus that may induce 
cardiomyocyte damage, while persistent CVB3 viral 
infections and autoimmune damage can lead to chronic 

myocarditis and DCM. A variety of immune cells, 
receptors, and cytokines are involved in the evolution 
of the response from self-limiting viral myocarditis to 
autoimmune myocarditis and ultimately to inflamma-
tory DCM, and innate cytokines can boost CVB3 
(Figure 3). Innate immunity is dominant in the viral 
myocarditis stage, with PRRs, such as TLRs, NLRs, and 
RAGEs, engaged in the signalling, activation of 
immune cells and secretion of cytokines. TLRs contri-
bute to innate immunity via various signalling path-
ways, such as MyD88-dependent TLR4-MyD88-MAPK 
signalling and MyD88-independent TRIF-IRF3 signal-
ling, and secrete cytokines including IFN, IL-1β, IL-6, 
TNF-α. Meanwhile, NLRs and RAGEs both play roles 
in the viral myocarditis through the NLRP3 inflamma-
some and RAGE/Dia pathways, respectively. In addi-
tion, NK cells directly kill infected cells and have a role 
in immune clearance, where they secrete cytokines. 
Adaptive immunity predominates in the autoimmune 
myocarditis stage, and CD4+ T cells differentiate into 
various Th subsets, among which Th1 and Th17 cell 
subsets secrete cytokines IL-17, IFN-γ, TNF-α, and IL- 
21 in order to promote viral myocarditis progression, 
whereas differentiation to Th2 and Treg cell subsets 
improves viral myocarditis. Meanwhile, activated 
CD8+ T cells can differentiate into CTLs that specifi-
cally kill virus-infected target cells, thereby alleviating 
viral myocarditis, while B cells secrete antibodies to 
neutralize the virus. Unfortunately, the low regenerative 
potential of cardiomyocytes makes full restoration of 
cardiac function unlikely even after antiviral immune 
responses or T cell activity have eliminated the virus. 
Simultaneously, the antigens produced as a result of 
viral damage may become autoimmune targets, leading 
to the triggering of pathogenic autoreactive T cells and 
antibodies, thus triggering an autoimmune response. 
Autoimmune myocarditis persists and progressively 
evolves into DCM with the involvement of cardiac 
macrophages, fibroblasts, and cytokines, in which cyto-
kines such as IL-1β and IL-6 promote DCM at this 
stage. As the immunological mechanism of viral myo-
carditis continues to be explored, having a better 
understanding of the pathophysiology of viral myocar-
ditis and generating novel ideas for clinical diagnosis 
and therapy can be helpful.

Abbreviations

DCM dilated cardiomyopathy
CVB3 Coxsackievirus group B type 3
CAR coxsackievirus and adenovirus receptor
DAF decay accelerating factor
HHV6 human herpesvirus 6

VIRULENCE 7



PVB19 Parvovirus B19
PAMPs pathogen-associated molecular patterns
DAMPs damage-associated molecular patterns
PRRs pattern recognition receptors
NK natural killer
TLRs Toll-like receptors
NLRs NOD-like receptors
RAGE AGE receptors
NCRs natural killer cell receptors
MyD88 myeloid differentiation factor 88
TRIF TIR-domain-containing adapter-inducing inter-

feron-β
IFN interferon
WT wild-type
PAR protease activated receptor
STAT signal transducer and activator of transcription
CFs cardiac fibroblasts
CXCL C-X-C motif chemokine ligand
iOGN osteoglycin
BMDMs bone marrow-derived macrophages
LPS lipopolysaccharide
p-PI3K phospho-phosphoinositide 3-kinase
NF-κB nuclear factor kappa-B
MAPK mitogen-activated protein kinase
IRAK4 interleukin-1 receptor-associated kinase 4
IL interleukin
TNF tumour necrosis factor
AP-1 activating protein-1
SQSTM1 sequestosome
IRF interferon regulatory factor
TRIM tripartite motif-containing
ASC apoptosis-associated speck-like protein containing 

a CARD
ROS reactive oxygen species
S100 S100 calcium binding protein
Dia-1 diaphanous-1
Fox forkhead box
APCs antigen-presenting cells
CTLs cytotoxic T lymphocytes
RORγT retinoic acid receptor-related orphan receptor γ
JAK Janus kinases
GATA3 GATA binding protein 3
CAP cholinergic anti-inflammatory pathway
TGF transforming growth factor
ERK extracellular regulated protein kinase
ECM extracellular matrix
MMP matrix metalloproteinase
COL collagen type
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